Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We import into homotopy theory the algebrogeometric construction of the cotangent space of a geometric point on a scheme. Specializing to the category of spectra local to a Morava –theory of height , we show that this can be used to produce a choice-free model of the determinantal sphere as well as an efficient Picard-graded cellular decomposition of . Coupling these ideas to work of Westerland, we give a “Snaith’s theorem” for the Iwasawa extension of the –local sphere.
Peterson, Eric 1
@article{GT_2020_24_1_a0, author = {Peterson, Eric}, title = {Coalgebraic formal curve spectra and spectral jet spaces}, journal = {Geometry & topology}, pages = {1--47}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, doi = {10.2140/gt.2020.24.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1/} }
Peterson, Eric. Coalgebraic formal curve spectra and spectral jet spaces. Geometry & topology, Tome 24 (2020) no. 1, pp. 1-47. doi : 10.2140/gt.2020.24.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1/
[1] Thom complexes, Proc. London Math. Soc. 11 (1961) 291 | DOI
,[2] Constructing the determinant sphere using a Tate twist, preprint (2018)
, , , ,[3] The homology of inverse limits and the algebraic chromatic splitting conjecture, unpublished (2017)
, , , ,[4] A modular description of the K(2)–local sphere at the prime 3, Topology 45 (2006) 343 | DOI
,[5] The homotopy groups of SE(2) at p ≥ 5 revisited, Adv. Math. 230 (2012) 458 | DOI
,[6] Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 | DOI
,[7] The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI
,[8] Dieudonné modules and p–divisible groups associated with Morava K–theory of Eilenberg–Mac Lane spaces, Algebr. Geom. Topol. 7 (2007) 529 | DOI
, ,[9] Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol. 9 (2005) 833 | DOI
,[10] Lectures on p–divisible groups, 302, Springer (1986)
,[11] Towards the finiteness of π∗LK(n)S0, Adv. Math. 219 (2008) 1656 | DOI
,[12] Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI
, ,[13] Koszul duality for operads, Duke Math. J. 76 (1994) 203 | DOI
, ,[14] Hopf rings, Dieudonné modules, and E∗Ω2S3, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 115 | DOI
,[15] On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015) 267 | DOI
, , , ,[16] The higher Morita category of En–algebras, Geom. Topol. 21 (2017) 1631 | DOI
,[17] Exterior powers of π–divisible modules over fields, J. Number Theory 138 (2014) 119 | DOI
,[18] Exterior powers of Lubin–Tate groups, J. Théor. Nombres Bordeaux 27 (2015) 77
,[19] The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994) 76 | DOI
, ,[20] Ambidexterity in K(n)–local stable homotopy theory, preprint (2013)
, ,[21] Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M E Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI
, , ,[22] Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI
, ,[23] The generalized homology of products, Glasg. Math. J. 49 (2007) 1 | DOI
,[24] Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) | DOI
, ,[25] The Brown–Peterson homology of elementary p–groups, Amer. J. Math. 107 (1985) 427 | DOI
, ,[26] Higher algebra, book project (2017)
,[27] Report on E–theory conjectures seminar, seminar notes (2013)
,[28] Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351 | DOI
,[29] Complex cobordism and stable homotopy groups of spheres, 121, Academic (1986)
,[30] Nilpotence and periodicity in stable homotopy theory, 128, Princeton Univ. Press (1992)
,[31] The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 | DOI
, ,[32] The homology of inverse limits of spectra, preprint (2001)
,[33] Towards the chromatic splitting conjecture, preprint (2003)
,[34] Localized stable homotopy of some classifying spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981) 325 | DOI
,[35] Duality for topological modular forms, Doc. Math. 17 (2012) 271
,[36] A conjecture about the K(n)–local Picard group, unpublished
,[37] On the p–adic interpolation of stable homotopy groups, from: "Adams Memorial Symposium on Algebraic Topology, II" (editors N Ray, G Walker), London Math. Soc. Lecture Note Ser. 176, Cambridge Univ. Press (1992) 45 | DOI
,[38] Formal schemes and formal groups, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 263 | DOI
,[39] Gross–Hopkins duality, Topology 39 (2000) 1021 | DOI
,[40] Geometric topology : localization, periodicity and Galois symmetry, 8, Springer (2005)
,[41] A higher chromatic analogue of the image of J, Geom. Topol. 21 (2017) 1033 | DOI
,Cité par Sources :