Equivariant concentration in topological groups
Geometry & topology, Tome 23 (2019) no. 2, pp. 925-956.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that, if G is a second-countable topological group with a compatible right-invariant metric d and (μn)n is a sequence of compactly supported Borel probability measures on G converging to invariance with respect to the mass transportation distance over d and such that (sptμn,dsptμn,μnsptμn)n concentrates to a fully supported, compact  mm–space (X,dX,μX), then X is homeomorphic to a G–invariant subspace of the Samuel compactification of G. In particular, this confirms a conjecture by Pestov and generalizes a well-known result by Gromov and Milman on the extreme amenability of topological groups. Furthermore, we exhibit a connection between the average orbit diameter of a metrizable flow of an arbitrary amenable topological group and the limit of Gromov’s observable diameters along any net of Borel probability measures UEB–converging to invariance over the group.

DOI : 10.2140/gt.2019.23.925
Classification : 54H11, 54H20, 22A10, 53C23
Keywords: topological groups, topological dynamics, measure concentration, observable distance, observable diameter, metric measure spaces

Schneider, Friedrich Martin 1

1 Institute of Algebra, TU Dresden, Dresden, Germany, Departamento de Matemática, Universidade Federal de Santa Catarina, Trindade, Florianópolis, Santa Catarina, Brazil
@article{GT_2019_23_2_a6,
     author = {Schneider, Friedrich Martin},
     title = {Equivariant concentration in topological groups},
     journal = {Geometry & topology},
     pages = {925--956},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.925},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.925/}
}
TY  - JOUR
AU  - Schneider, Friedrich Martin
TI  - Equivariant concentration in topological groups
JO  - Geometry & topology
PY  - 2019
SP  - 925
EP  - 956
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.925/
DO  - 10.2140/gt.2019.23.925
ID  - GT_2019_23_2_a6
ER  - 
%0 Journal Article
%A Schneider, Friedrich Martin
%T Equivariant concentration in topological groups
%J Geometry & topology
%D 2019
%P 925-956
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.925/
%R 10.2140/gt.2019.23.925
%F GT_2019_23_2_a6
Schneider, Friedrich Martin. Equivariant concentration in topological groups. Geometry & topology, Tome 23 (2019) no. 2, pp. 925-956. doi : 10.2140/gt.2019.23.925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.925/

[1] A Arhangelskii, M Tkachenko, Topological groups and related structures, 1, Atlantis (2008) | DOI

[2] J Auslander, Minimal flows and their extensions, 153, North-Holland (1988)

[3] I Ben Yaacov, J Melleray, T Tsankov, Metrizable universal minimal flows of Polish groups have a comeagre orbit, Geom. Funct. Anal. 27 (2017) 67 | DOI

[4] A Bouziad, J P Troallic, A precompactness test for topological groups in the manner of Grothendieck, Topology Proc. 31 (2007) 19

[5] A Carderi, A Thom, An exotic group as limit of finite special linear groups, Ann. Inst. Fourier Grenoble 68 (2018) 257 | DOI

[6] R Ellis, Lectures on topological dynamics, W A Benjamin (1969)

[7] K Funano, Concentration of maps and group actions, Geom. Dedicata 149 (2010) 103 | DOI

[8] A L Gibbs, F E Su, On choosing and bounding probability metrics, Int. Stat. Rev. 70 (2002) 419 | DOI

[9] T Giordano, V Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6 (2007) 279 | DOI

[10] E Glasner, B Tsirelson, B Weiss, The automorphism group of the Gaussian measure cannot act pointwise, Israel J. Math. 148 (2005) 305 | DOI

[11] E Glasner, B Weiss, Minimal actions of the group S(Z) of permutations of the integers, Geom. Funct. Anal. 12 (2002) 964 | DOI

[12] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999)

[13] M Gromov, V D Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983) 843 | DOI

[14] A S Kechris, V G Pestov, S Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005) 106 | DOI

[15] M Ledoux, The concentration of measure phenomenon, 89, Amer. Math. Soc. (2001)

[16] J Melleray, L Nguyen Van Thé, T Tsankov, Polish groups with metrizable universal minimal flows, Int. Math. Res. Not. 2016 (2016) 1285 | DOI

[17] V D Milman, Diameter of a minimal invariant subset of equivariant Lipschitz actions on compact subsets of Rk, from: "Geometrical aspects of functional analysis (1985/86)" (editors J Lindenstrauss, V D Milman), Lecture Notes in Math. 1267, Springer (1987) 13 | DOI

[18] J Pachl, Uniform spaces and measures, 30, Springer (2013) | DOI

[19] V G Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350 (1998) 4149 | DOI

[20] V Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. 127 (2002) 317 | DOI

[21] V Pestov, Dynamics of infinite-dimensional groups : the Ramsey–Dvoretzky–Milman phenomenon, 40, Amer. Math. Soc. (2006) | DOI

[22] V Pestov, The isometry group of the Urysohn space as a Levy group, Topology Appl. 154 (2007) 2173 | DOI

[23] V Pestov, Concentration of measure and whirly actions of Polish groups, from: "Probabilistic approach to geometry" (editors M Kotani, M Hino, T Kumagai), Adv. Stud. Pure Math. 57, Math. Soc. Japan (2010) 383

[24] V G Pestov, F M Schneider, On amenability and groups of measurable maps, J. Funct. Anal. 273 (2017) 3859 | DOI

[25] S T Rachev, L Rüschendorf, Mass transportation problems, II : Applications, Springer (1998)

[26] F M Schneider, Equivariant dissipation in non-archimedean groups, preprint (2018)

[27] F M Schneider, A Thom, On Følner sets in topological groups, Compos. Math. 154 (2018) 1333 | DOI

[28] T Shioya, Metric measure geometry : Gromov’s theory of convergence and concentration of metrics and measures, 25, Eur. Math. Soc. (2016) | DOI

[29] S Solecki, Actions of non-compact and non-locally compact Polish groups, J. Symbolic Logic 65 (2000) 1881 | DOI

[30] V Uspenskij, On universal minimal compact G–spaces, Topology Proc. 25 (2000) 301

[31] V V Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008) 1580 | DOI

[32] C Villani, Optimal transport: old and new, 338, Springer (2009) | DOI

[33] J De Vries, Elements of topological dynamics, 257, Kluwer (1993) | DOI

[34] A Weil, Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind. 551 (1937)

Cité par Sources :