On homology cobordism and local equivalence between plumbed manifolds
Geometry & topology, Tome 23 (2019) no. 2, pp. 865-924.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish a structural understanding of the involutive Heegaard Floer homology for all linear combinations of almost-rational (AR) plumbed three-manifolds. We use this to show that the Neumann–Siebenmann invariant is a homology cobordism invariant for all linear combinations of AR plumbed homology spheres. As a corollary, we prove that if Y is a linear combination of AR plumbed homology spheres with μ(Y ) = 1, then Y is not torsion in the homology cobordism group. A general computation of the involutive Heegaard Floer correction terms for these spaces is also included.

DOI : 10.2140/gt.2019.23.865
Classification : 57R58, 57M27
Keywords: involutive Heegaard Floer homology, homology cobordism

Dai, Irving 1 ; Stoffregen, Matthew 2

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{GT_2019_23_2_a5,
     author = {Dai, Irving and Stoffregen, Matthew},
     title = {On homology cobordism and local equivalence between plumbed manifolds},
     journal = {Geometry & topology},
     pages = {865--924},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.865},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/}
}
TY  - JOUR
AU  - Dai, Irving
AU  - Stoffregen, Matthew
TI  - On homology cobordism and local equivalence between plumbed manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 865
EP  - 924
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/
DO  - 10.2140/gt.2019.23.865
ID  - GT_2019_23_2_a5
ER  - 
%0 Journal Article
%A Dai, Irving
%A Stoffregen, Matthew
%T On homology cobordism and local equivalence between plumbed manifolds
%J Geometry & topology
%D 2019
%P 865-924
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/
%R 10.2140/gt.2019.23.865
%F GT_2019_23_2_a5
Dai, Irving; Stoffregen, Matthew. On homology cobordism and local equivalence between plumbed manifolds. Geometry & topology, Tome 23 (2019) no. 2, pp. 865-924. doi : 10.2140/gt.2019.23.865. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/

[1] M Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485 | DOI

[2] M Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129 | DOI

[3] S Boyer, C M Gordon, L Watson, On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[4] M B Can, Ç Karakurt, Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43 | DOI

[5] I Dai, On the Pin(2)–equivariant monopole Floer homology of plumbed 3–manifolds, Michigan Math. J. 67 (2018) 423 | DOI

[6] I Dai, C Manolescu, Involutive Heegaard Floer homology and plumbed three-manifolds, preprint (2017)

[7] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI

[8] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI

[9] M Furuta, Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI

[10] K Hendricks, C Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI

[11] K Hendricks, C Manolescu, I Zemke, A connected sum formula for involutive Heegaard Floer homology, Selecta Math. 24 (2018) 1183 | DOI

[12] A Juhász, D P Thurston, I Zemke, Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)

[13] F Lin, A Morse–Bott approach to monopole Floer homology and the triangulation conjecture, preprint (2014)

[14] J Lin, D Ruberman, N Saveliev, A splitting theorem for the Seiberg–Witten invariant of a homology S1 × S3, Geom. Topol. 22 (2018) 2865 | DOI

[15] C Manolescu, Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI

[16] A Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991 | DOI

[17] A Némethi, Graded roots and singularities, from: "Singularities in geometry and topology" (editors J P Brasselet, J Damon, M Oka), World Sci. (2007) 394 | DOI

[18] A Némethi, Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 507 | DOI

[19] W D Neumann, An invariant of plumbed homology spheres, from: "Topology symposium" (editors U Koschorke, W D Neumann), Lecture Notes in Math. 788, Springer (1980) 125 | DOI

[20] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI

[21] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI

[22] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[23] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[24] N Saveliev, Fukumoto–Furuta invariants of plumbed homology 3–spheres, Pacific J. Math. 205 (2002) 465 | DOI

[25] L Siebenmann, On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3–spheres, from: "Topology symposium" (editors U Koschorke, W D Neumann), Lecture Notes in Math. 788, Springer (1980) 172 | DOI

[26] M Stoffregen, Pin(2)–equivariant Seiberg–Witten Floer homology of Seifert fibrations, preprint (2015)

[27] M Stoffregen, Manolescu invariants of connected sums, Proc. Lond. Math. Soc. 115 (2017) 1072 | DOI

Cité par Sources :