Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish a structural understanding of the involutive Heegaard Floer homology for all linear combinations of almost-rational (AR) plumbed three-manifolds. We use this to show that the Neumann–Siebenmann invariant is a homology cobordism invariant for all linear combinations of AR plumbed homology spheres. As a corollary, we prove that if is a linear combination of AR plumbed homology spheres with , then is not torsion in the homology cobordism group. A general computation of the involutive Heegaard Floer correction terms for these spaces is also included.
Dai, Irving 1 ; Stoffregen, Matthew 2
@article{GT_2019_23_2_a5, author = {Dai, Irving and Stoffregen, Matthew}, title = {On homology cobordism and local equivalence between plumbed manifolds}, journal = {Geometry & topology}, pages = {865--924}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, doi = {10.2140/gt.2019.23.865}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/} }
TY - JOUR AU - Dai, Irving AU - Stoffregen, Matthew TI - On homology cobordism and local equivalence between plumbed manifolds JO - Geometry & topology PY - 2019 SP - 865 EP - 924 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/ DO - 10.2140/gt.2019.23.865 ID - GT_2019_23_2_a5 ER -
%0 Journal Article %A Dai, Irving %A Stoffregen, Matthew %T On homology cobordism and local equivalence between plumbed manifolds %J Geometry & topology %D 2019 %P 865-924 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/ %R 10.2140/gt.2019.23.865 %F GT_2019_23_2_a5
Dai, Irving; Stoffregen, Matthew. On homology cobordism and local equivalence between plumbed manifolds. Geometry & topology, Tome 23 (2019) no. 2, pp. 865-924. doi : 10.2140/gt.2019.23.865. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.865/
[1] Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485 | DOI
,[2] On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129 | DOI
,[3] On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[4] Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43 | DOI
, ,[5] On the Pin(2)–equivariant monopole Floer homology of plumbed 3–manifolds, Michigan Math. J. 67 (2018) 423 | DOI
,[6] Involutive Heegaard Floer homology and plumbed three-manifolds, preprint (2017)
, ,[7] Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI
, ,[8] Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI
,[9] Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI
,[10] Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI
, ,[11] A connected sum formula for involutive Heegaard Floer homology, Selecta Math. 24 (2018) 1183 | DOI
, , ,[12] Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)
, , ,[13] A Morse–Bott approach to monopole Floer homology and the triangulation conjecture, preprint (2014)
,[14] A splitting theorem for the Seiberg–Witten invariant of a homology S1 × S3, Geom. Topol. 22 (2018) 2865 | DOI
, , ,[15] Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI
,[16] On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991 | DOI
,[17] Graded roots and singularities, from: "Singularities in geometry and topology" (editors J P Brasselet, J Damon, M Oka), World Sci. (2007) 394 | DOI
,[18] Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 507 | DOI
,[19] An invariant of plumbed homology spheres, from: "Topology symposium" (editors U Koschorke, W D Neumann), Lecture Notes in Math. 788, Springer (1980) 125 | DOI
,[20] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI
, ,[21] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI
, ,[22] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[23] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[24] Fukumoto–Furuta invariants of plumbed homology 3–spheres, Pacific J. Math. 205 (2002) 465 | DOI
,[25] On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3–spheres, from: "Topology symposium" (editors U Koschorke, W D Neumann), Lecture Notes in Math. 788, Springer (1980) 172 | DOI
,[26] Pin(2)–equivariant Seiberg–Witten Floer homology of Seifert fibrations, preprint (2015)
,[27] Manolescu invariants of connected sums, Proc. Lond. Math. Soc. 115 (2017) 1072 | DOI
,Cité par Sources :