Orbifolds of n–dimensional defect TQFTs
Geometry & topology, Tome 23 (2019) no. 2, pp. 781-864.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the notion of n–dimensional topological quantum field theory (TQFT) with defects as a symmetric monoidal functor on decorated stratified bordisms of dimension n. The familiar closed or open–closed TQFTs are special cases of defect TQFTs, and for n = 2 and n = 3 our general definition recovers what had previously been studied in the literature.

Our main construction is that of “generalised orbifolds” for any n–dimensional defect TQFT: Given a defect TQFT Z, one obtains a new TQFT ZA by decorating the Poincaré duals of triangulated bordisms with certain algebraic data A and then evaluating with Z. The orbifold datum A is constrained by demanding invariance under n–dimensional Pachner moves. This procedure generalises both state sum models and gauging of finite symmetry groups for any n. After developing the general theory, we focus on the case n = 3.

DOI : 10.2140/gt.2019.23.781
Classification : 57R56
Keywords: TQFT, orbifold, triangulation-invariance, stratified bordism

Carqueville, Nils 1 ; Runkel, Ingo 2 ; Schaumann, Gregor 1

1 Fakultät für Mathematik, Universität Wien, Wien, Austria
2 Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
@article{GT_2019_23_2_a4,
     author = {Carqueville, Nils and Runkel, Ingo and Schaumann, Gregor},
     title = {Orbifolds of n{\textendash}dimensional defect {TQFTs}},
     journal = {Geometry & topology},
     pages = {781--864},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.781},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.781/}
}
TY  - JOUR
AU  - Carqueville, Nils
AU  - Runkel, Ingo
AU  - Schaumann, Gregor
TI  - Orbifolds of n–dimensional defect TQFTs
JO  - Geometry & topology
PY  - 2019
SP  - 781
EP  - 864
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.781/
DO  - 10.2140/gt.2019.23.781
ID  - GT_2019_23_2_a4
ER  - 
%0 Journal Article
%A Carqueville, Nils
%A Runkel, Ingo
%A Schaumann, Gregor
%T Orbifolds of n–dimensional defect TQFTs
%J Geometry & topology
%D 2019
%P 781-864
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.781/
%R 10.2140/gt.2019.23.781
%F GT_2019_23_2_a4
Carqueville, Nils; Runkel, Ingo; Schaumann, Gregor. Orbifolds of n–dimensional defect TQFTs. Geometry & topology, Tome 23 (2019) no. 2, pp. 781-864. doi : 10.2140/gt.2019.23.781. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.781/

[1] C. Bachas, M. Petropoulos, Topological models on the lattice and a remark on string theory cloning, Commun. Math. Phys. 152 (1993) 191 | DOI

[2] J Baez, D Wise, Quantum gravity seminar, lecture notes (2005)

[3] M Barkeshli, P Bonderson, M Cheng, Z Wang, Symmetry, defects, and gauging of topological phases, preprint (2014)

[4] M Barkeshli, C M Jian, X L Qi, Genons, twist defects, and projective non-abelian braiding statistics, Phys. Rev. B 87 (2013) | DOI

[5] J W Barrett, C Meusburger, G Schaumann, Gray categories with duals and their diagrams, preprint (2012)

[6] J W Barrett, B W Westbury, Invariants of piecewise-linear 3–manifolds, Trans. Amer. Math. Soc. 348 (1996) 3997 | DOI

[7] J W Barrett, B W Westbury, Spherical categories, Adv. Math. 143 (1999) 357 | DOI

[8] I Brunner, N Carqueville, D Plencner, Orbifolds and topological defects, preprint (2013)

[9] I Brunner, N Carqueville, D Plencner, Discrete torsion defects, Comm. Math. Phys. 337 (2015) 429 | DOI

[10] N Carqueville, Lecture notes on 2–dimensional defect TQFT, preprint (2016)

[11] N Carqueville, C Meusburger, G Schaumann, 3–dimensional defect TQFTs and their tricategories, preprint (2016)

[12] N Carqueville, A Ros Camacho, I Runkel, Orbifold equivalent potentials, J. Pure Appl. Algebra 220 (2016) 759 | DOI

[13] N Carqueville, I Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7 (2016) 203 | DOI

[14] N Carqueville, I Runkel, Introductory lectures on topological quantum field theory, from: "Advanced school on topological quantum field theory" (editors N Carqueville, P Sułkowski, R R Suszek), Banach Center Publ. 114, Polish Acad. Sci. Inst. Math. (2018) 9

[15] N Carqueville, I Runkel, G Schaumann, Line and surface defects in Reshetikhin–Turaev TQFT, preprint (2017)

[16] N Carqueville, I Runkel, G Schaumann, Orbifolds of Reshetikhin–Turaev TQFTs, preprint (2018)

[17] N Carqueville, A Q Velez, Calabi–Yau completions and orbifold equivalences, preprint (2015)

[18] S X Cui, C Galindo, J Y Plavnik, Z Wang, On gauging symmetry of modular categories, preprint (2015)

[19] A Davydov, L Kong, I Runkel, Field theories with defects and the centre functor, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 71 | DOI

[20] P Etingof, D Nikshych, V Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010) 209 | DOI

[21] J Fröhlich, J Fuchs, I Runkel, C Schweigert, Defect lines, dualities and generalised orbifolds, from: "XVIth International Congress on Mathematical Physics" (editor P Exner), World Sci. (2010) 608 | DOI

[22] J Fuchs, J Priel, C Schweigert, A Valentino, On the Brauer groups of symmetries of abelian Dijkgraaf–Witten theories, Comm. Math. Phys. 339 (2015) 385 | DOI

[23] J Fuchs, I Runkel, C Schweigert, TFT construction of RCFT correlators, III : Simple currents, Nuclear Phys. B 694 (2004) 277 | DOI

[24] J Fuchs, C Schweigert, Category theory for conformal boundary conditions, from: "Vertex operator algebras in mathematics and physics" (editors S Berman, Y Billig, Y Z Huang, J Lepowsky), Fields Inst. Commun. 39, Amer. Math. Soc. (2003) 25

[25] J Fuchs, C Schweigert, A note on permutation twist defects in topological bilayer phases, Lett. Math. Phys. 104 (2014) 1385 | DOI

[26] J Fuchs, C Schweigert, A Valentino, Bicategories for boundary conditions and for surface defects in 3–d TFT, Comm. Math. Phys. 321 (2013) 543 | DOI

[27] M Fukuma, S Hosono, H Kawai, Lattice topological field theory in two dimensions, Comm. Math. Phys. 161 (1994) 157 | DOI

[28] N Gurski, Coherence in three-dimensional category theory, 201, Cambridge Univ. Press (2013) | DOI

[29] A Kapustin, L Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry, II, Commun. Number Theory Phys. 4 (2010) 463 | DOI

[30] A Kapustin, L Rozansky, N Saulina, Three-dimensional topological field theory and symplectic algebraic geometry, I, Nuclear Phys. B 816 (2009) 295 | DOI

[31] A Kapustin, N Saulina, Surface operators in 3–d topological field theory and 2–d rational conformal field theory, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 175 | DOI

[32] A Kirillov Jr., B Balsam, Turaev–Viro invariants as an extended TQFT, preprint (2010)

[33] A Kitaev, L Kong, Models for gapped boundaries and domain walls, Comm. Math. Phys. 313 (2012) 351 | DOI

[34] R J Lawrence, An introduction to topological field theory, from: "The interface of knots and physics" (editor L H Kauffman), Proc. Sympos. Appl. Math. 51, Amer. Math. Soc. (1996) 89 | DOI

[35] S Morrison, K Walker, Blob homology, Geom. Topol. 16 (2012) 1481 | DOI

[36] J R Munkres, Elementary differential topology, 54, Princeton Univ. Press (1966)

[37] S H Ng, P Schauenburg, Higher Frobenius–Schur indicators for pivotal categories, from: "Hopf algebras and generalizations" (editors L H Kauffman, D E Radford, F J O Souza), Contemp. Math. 441, Amer. Math. Soc. (2007) 63 | DOI

[38] U Pachner, PL homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991) 129 | DOI

[39] M J Pflaum, Analytic and geometric study of stratified spaces, 1768, Springer (2001) | DOI

[40] F Quinn, Lectures on axiomatic topological quantum field theory, from: "Geometry and quantum field theory" (editors D S Freed, K K Uhlenbeck), IAS/Park City Math. Ser. 1, Amer. Math. Soc. (1995) 323

[41] G. Schaumann, Duals in tricategories and in the tricategory of bimodule categories, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2013)

[42] C Schweigert, L Woike, Orbifold construction for topological field theories, J. Pure Appl. Algebra 223 (2019) 1167 | DOI

[43] V G Turaev, O Y Viro, State sum invariants of 3–manifolds and quantum 6j–symbols, Topology 31 (1992) 865 | DOI

Cité par Sources :