Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct smooth concordance invariants of knots which take the form of piecewise linear maps for . These invariants arise from knot cohomology. We verify some properties which are analogous to those of the invariant (which arises from knot Floer homology), and some which differ. We make some explicit computations and give some topological applications.
Further to this, we define a concordance invariant from equivariant knot cohomology which subsumes many known concordance invariants arising from quantum knot cohomologies.
Lewark, Lukas 1 ; Lobb, Andrew 2
@article{GT_2019_23_2_a3, author = {Lewark, Lukas and Lobb, Andrew}, title = {Upsilon-like concordance invariants from \ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}n knot cohomology}, journal = {Geometry & topology}, pages = {745--780}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, doi = {10.2140/gt.2019.23.745}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/} }
TY - JOUR AU - Lewark, Lukas AU - Lobb, Andrew TI - Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology JO - Geometry & topology PY - 2019 SP - 745 EP - 780 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/ DO - 10.2140/gt.2019.23.745 ID - GT_2019_23_2_a3 ER -
Lewark, Lukas; Lobb, Andrew. Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology. Geometry & topology, Tome 23 (2019) no. 2, pp. 745-780. doi : 10.2140/gt.2019.23.745. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/
[1] On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956) 307
,[2] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[3] Correction terms and the nonorientable slice genus, Michigan Math. J. 67 (2018) 59 | DOI
, ,[4] Note on Khovanov link cohomology, preprint (2004)
,[5] Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010) 39 | DOI
,[6] Basic algebra, II, W H Freeman (1989)
,[7] An estimate of the Rasmussen invariant for links and the determination for certain links, Topology Appl. 196 (2015) 558 | DOI
,[8] Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI
,[9] Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI
, ,[10] Equivariant sl(n)–link homology, Algebr. Geom. Topol. 10 (2010) 1 | DOI
,[11] Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI
, ,[12] An endomorphism of the Khovanov invariant, preprint (2002)
,[13] Rasmussen’s spectral sequences and the slN–concordance invariants, Adv. Math. 260 (2014) 59 | DOI
,[14] New quantum obstructions to sliceness, Proc. Lond. Math. Soc. 112 (2016) 81 | DOI
, ,[15] Khoca, computer program (2018)
, ,[16] A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014) 983 | DOI
, ,[17] Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735 | DOI
,[18] Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017) 111 | DOI
,[19] A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI
,[20] Computable bounds for Rasmussen’s concordance invariant, Compos. Math. 147 (2011) 661 | DOI
,[21] Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI
, ,[22] Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI
, , ,[23] Unoriented knot Floer homology and the unoriented four-ball genus, Int. Math. Res. Not. 2017 (2017) 5137 | DOI
, , ,[24] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[25] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[26] Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004) 1013 | DOI
,[27] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[28] Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
,[29] Deformations of colored slN link homologies via foams, Geom. Topol. 20 (2016) 3431 | DOI
, ,[30] Constructions of quasipositive knots and links, I, from: "Knots, braids and singularities" (editor C Weber), Monogr. Enseign. Math. 31, Enseignement Math. (1983) 233
,[31] Exponential growth of colored HOMFLY-PT homology, preprint (2016)
,[32] On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54 | DOI
,Cité par Sources :