Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology
Geometry & topology, Tome 23 (2019) no. 2, pp. 745-780.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct smooth concordance invariants of knots K which take the form of piecewise linear maps ℷn(K): [0,1] → ℝ for n ≥ 2. These invariants arise from sln knot cohomology. We verify some properties which are analogous to those of the invariant ϒ (which arises from knot Floer homology), and some which differ. We make some explicit computations and give some topological applications.

Further to this, we define a concordance invariant from equivariant sln knot cohomology which subsumes many known concordance invariants arising from quantum knot cohomologies.

DOI : 10.2140/gt.2019.23.745
Classification : 57M25
Keywords: Khovanov–Rozansky cohomology, Knot concordance, Knot Floer homology

Lewark, Lukas 1 ; Lobb, Andrew 2

1 Mathematisches Institut, Universität Bern, Bern, Switzerland
2 Department of Mathematical Sciences, Durham University, Durham, United Kingdom
@article{GT_2019_23_2_a3,
     author = {Lewark, Lukas and Lobb, Andrew},
     title = {Upsilon-like concordance invariants from \ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}n knot cohomology},
     journal = {Geometry & topology},
     pages = {745--780},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.745},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/}
}
TY  - JOUR
AU  - Lewark, Lukas
AU  - Lobb, Andrew
TI  - Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology
JO  - Geometry & topology
PY  - 2019
SP  - 745
EP  - 780
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/
DO  - 10.2140/gt.2019.23.745
ID  - GT_2019_23_2_a3
ER  - 
%0 Journal Article
%A Lewark, Lukas
%A Lobb, Andrew
%T Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology
%J Geometry & topology
%D 2019
%P 745-780
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/
%R 10.2140/gt.2019.23.745
%F GT_2019_23_2_a3
Lewark, Lukas; Lobb, Andrew. Upsilon-like concordance invariants from 𝔰𝔩n knot cohomology. Geometry & topology, Tome 23 (2019) no. 2, pp. 745-780. doi : 10.2140/gt.2019.23.745. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.745/

[1] M Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956) 307

[2] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[3] M Golla, M Marengon, Correction terms and the nonorientable slice genus, Michigan Math. J. 67 (2018) 59 | DOI

[4] B Gornik, Note on Khovanov link cohomology, preprint (2004)

[5] J Greene, Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010) 39 | DOI

[6] N Jacobson, Basic algebra, II, W H Freeman (1989)

[7] T Kawamura, An estimate of the Rasmussen invariant for links and the determination for certain links, Topology Appl. 196 (2015) 558 | DOI

[8] M Khovanov, Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI

[9] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI

[10] D Krasner, Equivariant sl(n)–link homology, Algebr. Geom. Topol. 10 (2010) 1 | DOI

[11] P B Kronheimer, T S Mrowka, Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI

[12] E S Lee, An endomorphism of the Khovanov invariant, preprint (2002)

[13] L Lewark, Rasmussen’s spectral sequences and the slN–concordance invariants, Adv. Math. 260 (2014) 59 | DOI

[14] L Lewark, A Lobb, New quantum obstructions to sliceness, Proc. Lond. Math. Soc. 112 (2016) 81 | DOI

[15] L Lewark, A Lobb, Khoca, computer program (2018)

[16] R Lipshitz, S Sarkar, A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014) 983 | DOI

[17] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735 | DOI

[18] C Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017) 111 | DOI

[19] A Lobb, A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI

[20] A Lobb, Computable bounds for Rasmussen’s concordance invariant, Compos. Math. 147 (2011) 661 | DOI

[21] Y Ni, Z Wu, Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI

[22] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[23] P S Ozsváth, A I Stipsicz, Z Szabó, Unoriented knot Floer homology and the unoriented four-ball genus, Int. Math. Res. Not. 2017 (2017) 5137 | DOI

[24] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[25] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[26] J Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004) 1013 | DOI

[27] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[28] J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI

[29] D E V Rose, P Wedrich, Deformations of colored slN link homologies via foams, Geom. Topol. 20 (2016) 3431 | DOI

[30] L Rudolph, Constructions of quasipositive knots and links, I, from: "Knots, braids and singularities" (editor C Weber), Monogr. Enseign. Math. 31, Enseignement Math. (1983) 233

[31] P Wedrich, Exponential growth of colored HOMFLY-PT homology, preprint (2016)

[32] H Wu, On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54 | DOI

Cité par Sources :