Gauge theory on Aloff–Wallach spaces
Geometry & topology, Tome 23 (2019) no. 2, pp. 685-743.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For gauge groups U(1) and SO(3) we classify invariant G2 –instantons for homogeneous coclosed G2 –structures on Aloff–Wallach spaces Xk,l. As a consequence, we give examples where G2 –instantons can be used to distinguish between different strictly nearly parallel G2 –structures on the same Aloff–Wallach space. In addition to this, we find that while certain G2 –instantons exist for the strictly nearly parallel G2 –structure on X1,1, no such G2 –instantons exist for the 3–Sasakian one. As a further consequence of the classification, we produce examples of some other interesting phenomena, such as irreducible G2 –instantons that, as the structure varies, merge into the same reducible and obstructed one and G2 –instantons on nearly parallel G2 –manifolds that are not locally energy-minimizing.

DOI : 10.2140/gt.2019.23.685
Classification : 53C07, 53C29, 53C38, 57R57
Keywords: G2 geometry, gauge theory, instantons, Aloff–Wallach spaces, tri-Sasakian, nearly parallel, cocalibrated

Ball, Gavin 1 ; Oliveira, Goncalo 2

1 Department of Mathematics, Duke University, Durham, NC, United States
2 Departamento de Matemàtica Aplicada, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, Rio de Janeiro-RJ, Brazil
@article{GT_2019_23_2_a2,
     author = {Ball, Gavin and Oliveira, Goncalo},
     title = {Gauge theory on {Aloff{\textendash}Wallach} spaces},
     journal = {Geometry & topology},
     pages = {685--743},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.685},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/}
}
TY  - JOUR
AU  - Ball, Gavin
AU  - Oliveira, Goncalo
TI  - Gauge theory on Aloff–Wallach spaces
JO  - Geometry & topology
PY  - 2019
SP  - 685
EP  - 743
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/
DO  - 10.2140/gt.2019.23.685
ID  - GT_2019_23_2_a2
ER  - 
%0 Journal Article
%A Ball, Gavin
%A Oliveira, Goncalo
%T Gauge theory on Aloff–Wallach spaces
%J Geometry & topology
%D 2019
%P 685-743
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/
%R 10.2140/gt.2019.23.685
%F GT_2019_23_2_a2
Ball, Gavin; Oliveira, Goncalo. Gauge theory on Aloff–Wallach spaces. Geometry & topology, Tome 23 (2019) no. 2, pp. 685-743. doi : 10.2140/gt.2019.23.685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/

[1] S Aloff, N R Wallach, An infinite family of distinct 7–manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975) 93 | DOI

[2] L B Anderson, J Gray, A Lukas, B Ovrut, Stabilizing the complex structure in heterotic Calabi–Yau vacua, J. High Energy Phys. (2011) | DOI

[3] L B Anderson, J Gray, B Ovrut, Yukawa textures from heterotic stability walls, J. High Energy Phys. 2010 (2010) | DOI

[4] H Baum, T Friedrich, R Grunewald, I Kath, Twistor and Killing spinors on Riemannian manifolds, 108, Humboldt Univ. Sekt. Math. (1990) 179

[5] J P Bourguignon, H B Lawson, J Simons, Stability and gap phenomena for Yang–Mills fields, Proc. Nat. Acad. Sci. U.S.A. 76 (1979) 1550 | DOI

[6] C Boyer, K Galicki, 3–Sasakian manifolds, from: "Surveys in differential geometry : essays on Einstein manifolds" (editors C LeBrun, M Wang), Surv. Differ. Geom. 6, Int. (1999) 123 | DOI

[7] C P Boyer, K Galicki, B M Mann, The geometry and topology of 3–Sasakian manifolds, J. Reine Angew. Math. 455 (1994) 183

[8] R L Bryant, Some remarks on G2–structures, from: "Proceedings of Gökova Geometry–Topology Conference" (editors S Akbulut, T Önder, R J Stern), GGT (2006) 75

[9] F M Cabrera, M D Monar, A F Swann, Classification of G2–structures, J. London Math. Soc. 53 (1996) 407 | DOI

[10] B Charbonneau, D Harland, Deformations of nearly Kähler instantons, Comm. Math. Phys. 348 (2016) 959 | DOI

[11] A Clarke, Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys. 82 (2014) 84 | DOI

[12] E Corrigan, C Devchand, D B Fairlie, J Nuyts, First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B 214 (1983) 452 | DOI

[13] D Crowley, J Nordström, New invariants of G2–structures, Geom. Topol. 19 (2015) 2949 | DOI

[14] S Donaldson, E Segal, Gauge theory in higher dimensions, II, from: "Surveys in differential geometry, XVI : Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, Int. (2011) 1 | DOI

[15] S K Donaldson, R P Thomas, Gauge theory in higher dimensions, from: "The geometric universe" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31

[16] M Fernández, A Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI

[17] L Foscolo, Deformation theory of nearly Kähler manifolds, J. Lond. Math. Soc. 95 (2017) 586 | DOI

[18] T Friedrich, I Kath, A Moroianu, U Semmelmann, On nearly parallel G2–structures, J. Geom. Phys. 23 (1997) 259 | DOI

[19] D Harland, C Nölle, Instantons and Killing spinors, J. High Energy Phys. (2012) | DOI

[20] A S Haupt, T A Ivanova, O Lechtenfeld, A D Popov, Chern–Simons flows on Aloff–Wallach spaces and spin(7) instantons, Phys. Rev. D 83 (2011)

[21] M Kreck, S Stolz, Some nondiffeomorphic homeomorphic homogeneous 7–manifolds with positive sectional curvature, J. Differential Geom. 33 (1991) 465 | DOI

[22] J D Lotay, G Oliveira, SU(2)2–invariant G2–instantons, Math. Ann. 371 (2018) 961 | DOI

[23] P A Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481 | DOI

[24] G Oliveira, Monopoles on the Bryant–Salamon G2–manifolds, J. Geom. Phys. 86 (2014) 599 | DOI

[25] H N Sá Earp, T Walpuski, G2–instantons over twisted connected sums, Geom. Topol. 19 (2015) 1263 | DOI

[26] T Walpuski, G2–instantons on generalised Kummer constructions, Geom. Topol. 17 (2013) 2345 | DOI

[27] T Walpuski, G2–instantons over twisted connected sums : an example, Math. Res. Lett. 23 (2016) 529 | DOI

[28] H C Wang, On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958) 1 | DOI

[29] M Y Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982) 23 | DOI

[30] W Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. (2007) 63 | DOI

Cité par Sources :