Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For gauge groups and we classify invariant –instantons for homogeneous coclosed –structures on Aloff–Wallach spaces . As a consequence, we give examples where –instantons can be used to distinguish between different strictly nearly parallel –structures on the same Aloff–Wallach space. In addition to this, we find that while certain –instantons exist for the strictly nearly parallel –structure on , no such –instantons exist for the –Sasakian one. As a further consequence of the classification, we produce examples of some other interesting phenomena, such as irreducible –instantons that, as the structure varies, merge into the same reducible and obstructed one and –instantons on nearly parallel –manifolds that are not locally energy-minimizing.
Ball, Gavin 1 ; Oliveira, Goncalo 2
@article{GT_2019_23_2_a2, author = {Ball, Gavin and Oliveira, Goncalo}, title = {Gauge theory on {Aloff{\textendash}Wallach} spaces}, journal = {Geometry & topology}, pages = {685--743}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, doi = {10.2140/gt.2019.23.685}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/} }
Ball, Gavin; Oliveira, Goncalo. Gauge theory on Aloff–Wallach spaces. Geometry & topology, Tome 23 (2019) no. 2, pp. 685-743. doi : 10.2140/gt.2019.23.685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.685/
[1] An infinite family of distinct 7–manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975) 93 | DOI
, ,[2] Stabilizing the complex structure in heterotic Calabi–Yau vacua, J. High Energy Phys. (2011) | DOI
, , , ,[3] Yukawa textures from heterotic stability walls, J. High Energy Phys. 2010 (2010) | DOI
, , ,[4] Twistor and Killing spinors on Riemannian manifolds, 108, Humboldt Univ. Sekt. Math. (1990) 179
, , , ,[5] Stability and gap phenomena for Yang–Mills fields, Proc. Nat. Acad. Sci. U.S.A. 76 (1979) 1550 | DOI
, , ,[6] 3–Sasakian manifolds, from: "Surveys in differential geometry : essays on Einstein manifolds" (editors C LeBrun, M Wang), Surv. Differ. Geom. 6, Int. (1999) 123 | DOI
, ,[7] The geometry and topology of 3–Sasakian manifolds, J. Reine Angew. Math. 455 (1994) 183
, , ,[8] Some remarks on G2–structures, from: "Proceedings of Gökova Geometry–Topology Conference" (editors S Akbulut, T Önder, R J Stern), GGT (2006) 75
,[9] Classification of G2–structures, J. London Math. Soc. 53 (1996) 407 | DOI
, , ,[10] Deformations of nearly Kähler instantons, Comm. Math. Phys. 348 (2016) 959 | DOI
, ,[11] Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys. 82 (2014) 84 | DOI
,[12] First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B 214 (1983) 452 | DOI
, , , ,[13] New invariants of G2–structures, Geom. Topol. 19 (2015) 2949 | DOI
, ,[14] Gauge theory in higher dimensions, II, from: "Surveys in differential geometry, XVI : Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, Int. (2011) 1 | DOI
, ,[15] Gauge theory in higher dimensions, from: "The geometric universe" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31
, ,[16] Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI
, ,[17] Deformation theory of nearly Kähler manifolds, J. Lond. Math. Soc. 95 (2017) 586 | DOI
,[18] On nearly parallel G2–structures, J. Geom. Phys. 23 (1997) 259 | DOI
, , , ,[19] Instantons and Killing spinors, J. High Energy Phys. (2012) | DOI
, ,[20] Chern–Simons flows on Aloff–Wallach spaces and spin(7) instantons, Phys. Rev. D 83 (2011)
, , , ,[21] Some nondiffeomorphic homeomorphic homogeneous 7–manifolds with positive sectional curvature, J. Differential Geom. 33 (1991) 465 | DOI
, ,[22] SU(2)2–invariant G2–instantons, Math. Ann. 371 (2018) 961 | DOI
, ,[23] Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481 | DOI
,[24] Monopoles on the Bryant–Salamon G2–manifolds, J. Geom. Phys. 86 (2014) 599 | DOI
,[25] G2–instantons over twisted connected sums, Geom. Topol. 19 (2015) 1263 | DOI
, ,[26] G2–instantons on generalised Kummer constructions, Geom. Topol. 17 (2013) 2345 | DOI
,[27] G2–instantons over twisted connected sums : an example, Math. Res. Lett. 23 (2016) 529 | DOI
,[28] On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958) 1 | DOI
,[29] Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982) 23 | DOI
,[30] Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. (2007) 63 | DOI
,Cité par Sources :