Towards a quantum Lefschetz hyperplane theorem in all genera
Geometry & topology, Tome 23 (2019) no. 1, pp. 493-512.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

An effective algorithm of determining Gromov–Witten invariants of smooth hypersurfaces in any genus (subject to a degree bound) from Gromov–Witten invariants of the ambient space is proposed.

DOI : 10.2140/gt.2019.23.493
Classification : 14N35
Keywords: Gromov–Witten, quantum Lefschetz hyperplane theorem

Fan, Honglu 1 ; Lee, Yuan-Pin 2

1 D-MATH, ETH Zürich, Zürich, Switzerland
2 Department of Mathematics, University of Utah, Salt Lake City, UT, United States
@article{GT_2019_23_1_a9,
     author = {Fan, Honglu and Lee, Yuan-Pin},
     title = {Towards a quantum {Lefschetz} hyperplane theorem in all genera},
     journal = {Geometry & topology},
     pages = {493--512},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.493},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/}
}
TY  - JOUR
AU  - Fan, Honglu
AU  - Lee, Yuan-Pin
TI  - Towards a quantum Lefschetz hyperplane theorem in all genera
JO  - Geometry & topology
PY  - 2019
SP  - 493
EP  - 512
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/
DO  - 10.2140/gt.2019.23.493
ID  - GT_2019_23_1_a9
ER  - 
%0 Journal Article
%A Fan, Honglu
%A Lee, Yuan-Pin
%T Towards a quantum Lefschetz hyperplane theorem in all genera
%J Geometry & topology
%D 2019
%P 493-512
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/
%R 10.2140/gt.2019.23.493
%F GT_2019_23_1_a9
Fan, Honglu; Lee, Yuan-Pin. Towards a quantum Lefschetz hyperplane theorem in all genera. Geometry & topology, Tome 23 (2019) no. 1, pp. 493-512. doi : 10.2140/gt.2019.23.493. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/

[1] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279 | DOI

[2] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994) 311 | DOI

[3] H L Chang, S Guo, W P Li, J Zhou, Genus one GW invariants of quintic threefolds via MSP localization, preprint (2017)

[4] H L Chang, J Li, W P Li, C C M Liu, An effective theory of GW and FJRW invariants of quintics Calabi–Yau manifolds, preprint (2016)

[5] T Coates, A Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI

[6] H Fan, Y P Lee, On Gromov–Witten theory of projective bundles, preprint (2016)

[7] H Fan, Y P Lee, Towards a quantum Lefschetz hyperplane theorem in all genera, preprint (2017)

[8] A B Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices 1996 (1996) 613 | DOI

[9] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551

[10] S Guo, F Janda, Y Ruan, A mirror theorem for genus two Gromov–Witten invariants of quintic threefolds, preprint (2017)

[11] S Guo, D Ross, Genus-one mirror symmetry in the Landau–Ginzburg model, preprint (2016)

[12] S Guo, D Ross, The genus-one global mirror theorem for the quintic threefold, preprint (2017)

[13] E N Ionel, T H Parker, The Gopakumar–Vafa formula for symplectic manifolds, Ann. of Math. 187 (2018) 1 | DOI

[14] B Kim, Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999) 71 | DOI

[15] B Kim, A Kresch, T Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127 | DOI

[16] B Kim, H Lho, Mirror theorem for elliptic quasimap invariants, Geom. Topol. 22 (2018) 1459 | DOI

[17] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI

[18] Y P Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121 | DOI

[19] Y P Lee, R Pandharipande, A reconstruction theorem in quantum cohomology and quantum K–theory, Amer. J. Math. 126 (2004) 1367 | DOI

[20] C C M Liu, Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, Int. (2013) 353

[21] A Mustata, A Mustata, Gromov–Witten invariants for varieties with C∗ action, preprint (2015)

[22] L Wu, A remark on Gromov–Witten invariants of quintic threefold, Adv. Math. 326 (2018) 241 | DOI

[23] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI

Cité par Sources :