Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
An effective algorithm of determining Gromov–Witten invariants of smooth hypersurfaces in any genus (subject to a degree bound) from Gromov–Witten invariants of the ambient space is proposed.
Fan, Honglu 1 ; Lee, Yuan-Pin 2
@article{GT_2019_23_1_a9, author = {Fan, Honglu and Lee, Yuan-Pin}, title = {Towards a quantum {Lefschetz} hyperplane theorem in all genera}, journal = {Geometry & topology}, pages = {493--512}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, doi = {10.2140/gt.2019.23.493}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/} }
TY - JOUR AU - Fan, Honglu AU - Lee, Yuan-Pin TI - Towards a quantum Lefschetz hyperplane theorem in all genera JO - Geometry & topology PY - 2019 SP - 493 EP - 512 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/ DO - 10.2140/gt.2019.23.493 ID - GT_2019_23_1_a9 ER -
Fan, Honglu; Lee, Yuan-Pin. Towards a quantum Lefschetz hyperplane theorem in all genera. Geometry & topology, Tome 23 (2019) no. 1, pp. 493-512. doi : 10.2140/gt.2019.23.493. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.493/
[1] Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279 | DOI
, , , ,[2] Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994) 311 | DOI
, , , ,[3] Genus one GW invariants of quintic threefolds via MSP localization, preprint (2017)
, , , ,[4] An effective theory of GW and FJRW invariants of quintics Calabi–Yau manifolds, preprint (2016)
, , , ,[5] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI
, ,[6] On Gromov–Witten theory of projective bundles, preprint (2016)
, ,[7] Towards a quantum Lefschetz hyperplane theorem in all genera, preprint (2017)
, ,[8] Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices 1996 (1996) 613 | DOI
,[9] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551
,[10] A mirror theorem for genus two Gromov–Witten invariants of quintic threefolds, preprint (2017)
, , ,[11] Genus-one mirror symmetry in the Landau–Ginzburg model, preprint (2016)
, ,[12] The genus-one global mirror theorem for the quintic threefold, preprint (2017)
, ,[13] The Gopakumar–Vafa formula for symplectic manifolds, Ann. of Math. 187 (2018) 1 | DOI
, ,[14] Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999) 71 | DOI
,[15] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127 | DOI
, , ,[16] Mirror theorem for elliptic quasimap invariants, Geom. Topol. 22 (2018) 1459 | DOI
, ,[17] Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI
,[18] Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121 | DOI
,[19] A reconstruction theorem in quantum cohomology and quantum K–theory, Amer. J. Math. 126 (2004) 1367 | DOI
, ,[20] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, Int. (2013) 353
,[21] Gromov–Witten invariants for varieties with C∗ action, preprint (2015)
, ,[22] A remark on Gromov–Witten invariants of quintic threefold, Adv. Math. 326 (2018) 241 | DOI
,[23] The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI
,Cité par Sources :