Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a smooth projective variety endowed with a faithful action of a finite group , following Jarvis–Kaufmann–Kimura (Invent. Math. 168 (2007) 23–81), and Fantechi–Göttsche (Duke Math. J. 117 (2003) 197–227), we define the orbifold motive (or Chen–Ruan motive) of the quotient stack as an algebra object in the category of Chow motives. Inspired by Ruan (Contemp. Math. 312 (2002) 187–233), one can formulate a motivic version of his cohomological hyper-Kähler resolution conjecture (CHRC). We prove this motivic version, as well as its K–theoretic analogue conjectured by Jarvis–Kaufmann–Kimura in loc. cit., in two situations related to an abelian surface and a positive integer . Case (A) concerns Hilbert schemes of points of : the Chow motive of is isomorphic as algebra objects, up to a suitable sign change, to the orbifold motive of the quotient stack . Case (B) concerns generalized Kummer varieties: the Chow motive of the generalized Kummer variety is isomorphic as algebra objects, up to a suitable sign change, to the orbifold motive of the quotient stack , where is the kernel abelian variety of the summation map . As a by-product, we prove the original cohomological hyper-Kähler resolution conjecture for generalized Kummer varieties. As an application, we provide multiplicative Chow–Künneth decompositions for Hilbert schemes of abelian surfaces and for generalized Kummer varieties. In particular, we have a multiplicative direct sum decomposition of their Chow rings with rational coefficients, which is expected to be the splitting of the conjectural Bloch–Beilinson–Murre filtration. The existence of such a splitting for holomorphic symplectic varieties is conjectured by Beauville (London Math. Soc. Lecture Note Ser. 344 (2007) 38–53). Finally, as another application, we prove that over a nonempty Zariski open subset of the base, there exists a decomposition isomorphism in which is compatible with the cup products on both sides, where is the relative generalized Kummer variety associated to a (smooth) family of abelian surfaces .
Fu, Lie 1 ; Tian, Zhiyu 2 ; Vial, Charles 3
@article{GT_2019_23_1_a8, author = {Fu, Lie and Tian, Zhiyu and Vial, Charles}, title = {Motivic {hyper-K\"ahler} resolution conjecture, {I} : {Generalized} {Kummer} varieties}, journal = {Geometry & topology}, pages = {427--492}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, doi = {10.2140/gt.2019.23.427}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/} }
TY - JOUR AU - Fu, Lie AU - Tian, Zhiyu AU - Vial, Charles TI - Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties JO - Geometry & topology PY - 2019 SP - 427 EP - 492 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/ DO - 10.2140/gt.2019.23.427 ID - GT_2019_23_1_a8 ER -
%0 Journal Article %A Fu, Lie %A Tian, Zhiyu %A Vial, Charles %T Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties %J Geometry & topology %D 2019 %P 427-492 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/ %R 10.2140/gt.2019.23.427 %F GT_2019_23_1_a8
Fu, Lie; Tian, Zhiyu; Vial, Charles. Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties. Geometry & topology, Tome 23 (2019) no. 1, pp. 427-492. doi : 10.2140/gt.2019.23.427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/
[1] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI
, , ,[2] Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI
, ,[3] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17, Soc. Mat. de France (2004)
,[4] Stringy Hodge numbers of varieties with Gorenstein canonical singularities, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 1
,[5] Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology 35 (1996) 901 | DOI
, ,[6] Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, from: "Algebraic geometry" (editors M Raynaud, T Shioda), Lecture Notes in Math. 1016, Springer (1983) 238 | DOI
,[7] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI
,[8] Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986) 647 | DOI
,[9] Symplectic singularities, Invent. Math. 139 (2000) 541 | DOI
,[10] On the splitting of the Bloch–Beilinson filtration, from: "Algebraic cycles and motives, II", London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38
,[11] On the Chow ring of a K3 surface, J. Algebraic Geom. 13 (2004) 417 | DOI
, ,[12] Description de HilbnC{x,y}, Invent. Math. 41 (1977) 45 | DOI
,[13] Symplectic resolutions for conical symplectic varieties, Int. Math. Res. Not. 2015 (2015) 4335 | DOI
, ,[14] On the cohomology of generalized Kummer varieties, PhD thesis, Universität zu Köln (2002)
,[15] The crepant resolution conjecture, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 | DOI
, ,[16] The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002) 824 | DOI
, ,[17] The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004) 151 | DOI
, ,[18] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI
, ,[19] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1 | DOI
, ,[20] Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier Grenoble 63 (2013) 431 | DOI
, ,[21] Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968) 259
,[22] Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201
, ,[23] Strings on orbifolds, Nuclear Phys. B 261 (1985) 678 | DOI
, , , ,[24] Strings on orbifolds, II, Nuclear Phys. B 274 (1986) 285 | DOI
, , , ,[25] Logarithmic trace and orbifold products, Duke Math. J. 153 (2010) 427 | DOI
, , ,[26] Orbifold cohomology for global quotients, Duke Math. J. 117 (2003) 197 | DOI
, ,[27] Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511 | DOI
,[28] Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003) 167 | DOI
,[29] Beauville–Voisin conjecture for generalized Kummer varieties, Int. Math. Res. Not. 2015 (2015) 3878 | DOI
,[30] Motivic hyper-Kähler resolution conjecture, II : Hilbert schemes of K3 surfaces, preprint (2017)
, ,[31] Motivic multiplicative McKay correspondence for surfaces, Manuscripta Mathematica (2018) | DOI
, ,[32] Intersection theory, 2, Springer (1998) | DOI
,[33] Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001) 941 | DOI
,[34] McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996) 135 | DOI
, ,[35] Motivic sheaves and filtrations on Chow groups, from: "Motives, I" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 245
,[36] Stringy K–theory and the Chern character, Invent. Math. 168 (2007) 23 | DOI
, , ,[37] On the Chow ring of certain rational cohomology tori, C. R. Math. Acad. Sci. Paris 355 (2017) 571 | DOI
, ,[38] Orbifold cohomology reloaded, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 231 | DOI
,[39] Higher regulators, Hilbert modular surfaces, and special values of L–functions, Duke Math. J. 92 (1998) 61 | DOI
,[40] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI
,[41] The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003) 305 | DOI
, ,[42] The global McKay–Ruan correspondence via motivic integration, Bull. London Math. Soc. 36 (2004) 509 | DOI
, ,[43] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI
,[44] Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI
,[45] Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001) 757
,[46] Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI
,[47] Twisted cohomology of the Hilbert schemes of points on surfaces, Doc. Math. 14 (2009) 749
,[48] Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011) 1 | DOI
,[49] La correspondance de McKay, from: "Séminaire Bourbaki, 1999/2000", Astérisque 276, Soc. Mat. de France (2002) 53
,[50] On Beauville’s conjectural weak splitting property, Int. Math. Res. Not. 2016 (2016) 6133 | DOI
,[51] Stringy geometry and topology of orbifolds, from: "Symposium in honor of C H Clemens" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 187 | DOI
,[52] The cohomology ring of crepant resolutions of orbifolds, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117 | DOI
,[53] The Fourier transform for certain hyperKähler fourfolds, 1139, Amer. Math. Soc. (2016) | DOI
, ,[54] Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13 (2005) 113 | DOI
,[55] On the motive of some hyperKähler varieties, J. Reine Angew. Math. 725 (2017) 235 | DOI
,[56] Remarks on motives of abelian type, Tohoku Math. J. 69 (2017) 195 | DOI
,[57] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI
,[58] On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613 | DOI
,[59] Chow rings and decomposition theorems for families of K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol. 16 (2012) 433 | DOI
,[60] Some new results on modified diagonals, Geom. Topol. 19 (2015) 3307 | DOI
,[61] The K–book : an introduction to algebraic K–theory, 145, Amer. Math. Soc. (2013)
,[62] Algebraic cycles on a generalized Kummer variety, Int. Math. Res. Not. 2018 (2018) 932 | DOI
,[63] Twisted jets, motivic measures and orbifold cohomology, Compos. Math. 140 (2004) 396 | DOI
,[64] Finite-dimensionality and cycles on powers of K3 surfaces, Comment. Math. Helv. 90 (2015) 503 | DOI
,Cité par Sources :