Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties
Geometry & topology, Tome 23 (2019) no. 1, pp. 427-492.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a smooth projective variety M endowed with a faithful action of a finite group G, following Jarvis–Kaufmann–Kimura (Invent. Math. 168 (2007) 23–81), and Fantechi–Göttsche (Duke Math. J. 117 (2003) 197–227), we define the orbifold motive (or Chen–Ruan motive) of the quotient stack [MG] as an algebra object in the category of Chow motives. Inspired by Ruan (Contemp. Math. 312 (2002) 187–233), one can formulate a motivic version of his cohomological hyper-Kähler resolution conjecture (CHRC). We prove this motivic version, as well as its K–theoretic analogue conjectured by Jarvis–Kaufmann–Kimura in loc. cit., in two situations related to an abelian surface A and a positive integer n. Case (A) concerns Hilbert schemes of points of A: the Chow motive of A[n] is isomorphic as algebra objects, up to a suitable sign change, to the orbifold motive of the quotient stack [AnSn]. Case (B) concerns generalized Kummer varieties: the Chow motive of the generalized Kummer variety Kn(A) is isomorphic as algebra objects, up to a suitable sign change, to the orbifold motive of the quotient stack [A0n+1Sn+1], where A0n+1 is the kernel abelian variety of the summation map An+1 A. As a by-product, we prove the original cohomological hyper-Kähler resolution conjecture for generalized Kummer varieties. As an application, we provide multiplicative Chow–Künneth decompositions for Hilbert schemes of abelian surfaces and for generalized Kummer varieties. In particular, we have a multiplicative direct sum decomposition of their Chow rings with rational coefficients, which is expected to be the splitting of the conjectural Bloch–Beilinson–Murre filtration. The existence of such a splitting for holomorphic symplectic varieties is conjectured by Beauville (London Math. Soc. Lecture Note Ser. 344 (2007) 38–53). Finally, as another application, we prove that over a nonempty Zariski open subset of the base, there exists a decomposition isomorphism Rπ Riπ[i] in Dcb(B) which is compatible with the cup products on both sides, where π: Kn(A) B is the relative generalized Kummer variety associated to a (smooth) family of abelian surfaces A B.

DOI : 10.2140/gt.2019.23.427
Classification : 14C15, 14C25, 14C30, 14J32, 14N35, 14K99
Keywords: hyper-Kähler varieties, symplectic resolutions, crepant resolution conjecture, Chow rings, motives, orbifold cohomology, Hilbert schemes, generalized Kummer varieties, abelian varieties

Fu, Lie 1 ; Tian, Zhiyu 2 ; Vial, Charles 3

1 Département de Mathématiques, Université Claude Bernard Lyon 1, Institut Camille Jordan, Villeurbanne, France
2 Beijing International Center for Mathematical Research, Peking University, Beijing, China
3 Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
@article{GT_2019_23_1_a8,
     author = {Fu, Lie and Tian, Zhiyu and Vial, Charles},
     title = {Motivic {hyper-K\"ahler} resolution conjecture, {I} : {Generalized} {Kummer} varieties},
     journal = {Geometry & topology},
     pages = {427--492},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.427},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/}
}
TY  - JOUR
AU  - Fu, Lie
AU  - Tian, Zhiyu
AU  - Vial, Charles
TI  - Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties
JO  - Geometry & topology
PY  - 2019
SP  - 427
EP  - 492
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/
DO  - 10.2140/gt.2019.23.427
ID  - GT_2019_23_1_a8
ER  - 
%0 Journal Article
%A Fu, Lie
%A Tian, Zhiyu
%A Vial, Charles
%T Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties
%J Geometry & topology
%D 2019
%P 427-492
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/
%R 10.2140/gt.2019.23.427
%F GT_2019_23_1_a8
Fu, Lie; Tian, Zhiyu; Vial, Charles. Motivic hyper-Kähler resolution conjecture, I : Generalized Kummer varieties. Geometry & topology, Tome 23 (2019) no. 1, pp. 427-492. doi : 10.2140/gt.2019.23.427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.427/

[1] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI

[2] D Abramovich, A Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI

[3] Y André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17, Soc. Mat. de France (2004)

[4] V V Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 1

[5] V V Batyrev, D I Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology 35 (1996) 901 | DOI

[6] A Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, from: "Algebraic geometry" (editors M Raynaud, T Shioda), Lecture Notes in Math. 1016, Springer (1983) 238 | DOI

[7] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI

[8] A Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986) 647 | DOI

[9] A Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541 | DOI

[10] A Beauville, On the splitting of the Bloch–Beilinson filtration, from: "Algebraic cycles and motives, II", London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38

[11] A Beauville, C Voisin, On the Chow ring of a K3 surface, J. Algebraic Geom. 13 (2004) 417 | DOI

[12] J Briançon, Description de HilbnC{x,y}, Invent. Math. 41 (1977) 45 | DOI

[13] M Brion, B Fu, Symplectic resolutions for conical symplectic varieties, Int. Math. Res. Not. 2015 (2015) 4335 | DOI

[14] M Britze, On the cohomology of generalized Kummer varieties, PhD thesis, Universität zu Köln (2002)

[15] J Bryan, T Graber, The crepant resolution conjecture, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 | DOI

[16] M A A De Cataldo, L Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002) 824 | DOI

[17] M A A De Cataldo, L Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004) 151 | DOI

[18] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[19] W Chen, Y Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1 | DOI

[20] T Coates, Y Ruan, Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier Grenoble 63 (2013) 431 | DOI

[21] P Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968) 259

[22] C Deninger, J Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201

[23] L Dixon, J A Harvey, C Vafa, E Witten, Strings on orbifolds, Nuclear Phys. B 261 (1985) 678 | DOI

[24] L Dixon, J Harvey, C Vafa, E Witten, Strings on orbifolds, II, Nuclear Phys. B 274 (1986) 285 | DOI

[25] D Edidin, T J Jarvis, T Kimura, Logarithmic trace and orbifold products, Duke Math. J. 153 (2010) 427 | DOI

[26] B Fantechi, L Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003) 197 | DOI

[27] J Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511 | DOI

[28] B Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003) 167 | DOI

[29] L Fu, Beauville–Voisin conjecture for generalized Kummer varieties, Int. Math. Res. Not. 2015 (2015) 3878 | DOI

[30] L Fu, Z Tian, Motivic hyper-Kähler resolution conjecture, II : Hilbert schemes of K3 surfaces, preprint (2017)

[31] L Fu, Z Tian, Motivic multiplicative McKay correspondence for surfaces, Manuscripta Mathematica (2018) | DOI

[32] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[33] M Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001) 941 | DOI

[34] Y Ito, I Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996) 135 | DOI

[35] U Jannsen, Motivic sheaves and filtrations on Chow groups, from: "Motives, I" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 245

[36] T J Jarvis, R Kaufmann, T Kimura, Stringy K–theory and the Chern character, Invent. Math. 168 (2007) 23 | DOI

[37] Z Jiang, Q Yin, On the Chow ring of certain rational cohomology tori, C. R. Math. Acad. Sci. Paris 355 (2017) 571 | DOI

[38] T Kimura, Orbifold cohomology reloaded, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 231 | DOI

[39] G Kings, Higher regulators, Hilbert modular surfaces, and special values of L–functions, Duke Math. J. 92 (1998) 61 | DOI

[40] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI

[41] M Lehn, C Sorger, The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003) 305 | DOI

[42] E Lupercio, M Poddar, The global McKay–Ruan correspondence via motivic integration, Bull. London Math. Soc. 36 (2004) 509 | DOI

[43] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[44] H Nakajima, Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI

[45] I Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001) 757

[46] Y Namikawa, Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI

[47] M A Nieper-Wisskirchen, Twisted cohomology of the Hilbert schemes of points on surfaces, Doc. Math. 14 (2009) 749

[48] P O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011) 1 | DOI

[49] M Reid, La correspondance de McKay, from: "Séminaire Bourbaki, 1999/2000", Astérisque 276, Soc. Mat. de France (2002) 53

[50] U Rieß, On Beauville’s conjectural weak splitting property, Int. Math. Res. Not. 2016 (2016) 6133 | DOI

[51] Y Ruan, Stringy geometry and topology of orbifolds, from: "Symposium in honor of C H Clemens" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 187 | DOI

[52] Y Ruan, The cohomology ring of crepant resolutions of orbifolds, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117 | DOI

[53] M Shen, C Vial, The Fourier transform for certain hyperKähler fourfolds, 1139, Amer. Math. Soc. (2016) | DOI

[54] B Uribe, Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13 (2005) 113 | DOI

[55] C Vial, On the motive of some hyperKähler varieties, J. Reine Angew. Math. 725 (2017) 235 | DOI

[56] C Vial, Remarks on motives of abelian type, Tohoku Math. J. 69 (2017) 195 | DOI

[57] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[58] C Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613 | DOI

[59] C Voisin, Chow rings and decomposition theorems for families of K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol. 16 (2012) 433 | DOI

[60] C Voisin, Some new results on modified diagonals, Geom. Topol. 19 (2015) 3307 | DOI

[61] C A Weibel, The K–book : an introduction to algebraic K–theory, 145, Amer. Math. Soc. (2013)

[62] Z Xu, Algebraic cycles on a generalized Kummer variety, Int. Math. Res. Not. 2018 (2018) 932 | DOI

[63] T Yasuda, Twisted jets, motivic measures and orbifold cohomology, Compos. Math. 140 (2004) 396 | DOI

[64] Q Yin, Finite-dimensionality and cycles on powers of K3 surfaces, Comment. Math. Helv. 90 (2015) 503 | DOI

Cité par Sources :