On the nonrealizability of braid groups by homeomorphisms
Geometry & topology, Tome 23 (2019) no. 7, pp. 3735-3749.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the projection Homeo+(Dn2) Bn does not have a section for n 6; ie the braid group Bn cannot be geometrically realized as a group of homeomorphisms of a disk fixing the boundary pointwise and n marked points in the interior as a set. We also give a new proof of a result of Markovic (2007) that the mapping class group of a surface of genus g cannot be geometrically realized as a group of homeomorphisms when g 2.

DOI : 10.2140/gt.2019.23.3735
Classification : 37E30, 57M60
Keywords: dynamics of surfaces, braid groups, Nielsen realization

Chen, Lei 1

1 Department of Mathematics, California Institute of Technology, Pasadena, CA, United States
@article{GT_2019_23_7_a10,
     author = {Chen, Lei},
     title = {On the nonrealizability of braid groups by homeomorphisms},
     journal = {Geometry & topology},
     pages = {3735--3749},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3735},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3735/}
}
TY  - JOUR
AU  - Chen, Lei
TI  - On the nonrealizability of braid groups by homeomorphisms
JO  - Geometry & topology
PY  - 2019
SP  - 3735
EP  - 3749
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3735/
DO  - 10.2140/gt.2019.23.3735
ID  - GT_2019_23_7_a10
ER  - 
%0 Journal Article
%A Chen, Lei
%T On the nonrealizability of braid groups by homeomorphisms
%J Geometry & topology
%D 2019
%P 3735-3749
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3735/
%R 10.2140/gt.2019.23.3735
%F GT_2019_23_7_a10
Chen, Lei. On the nonrealizability of braid groups by homeomorphisms. Geometry & topology, Tome 23 (2019) no. 7, pp. 3735-3749. doi : 10.2140/gt.2019.23.3735. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3735/

[1] M Bestvina, T Church, J Souto, Some groups of mapping classes not realized by diffeomorphisms, Comment. Math. Helv. 88 (2013) 205 | DOI

[2] J S Birman, H M Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. 97 (1973) 424 | DOI

[3] L E J Brouwer, Über die periodischen Transformationen der Kugel, Math. Ann. 80 (1919) 39 | DOI

[4] L Chen, N Salter, Section problems for configurations of points on the Riemann sphere, preprint (2018)

[5] A Constantin, B Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. 40 (1994) 193

[6] S. Eilenberg, Sur les transformations périodiques de la surface de sphere, Fund. Math. 22 (1934) 28 | DOI

[7] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[8] J Franks, M Handel, Global fixed points for centralizers and Morita’s theorem, Geom. Topol. 13 (2009) 87 | DOI

[9] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235 | DOI

[10] B Von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919) 36 | DOI

[11] K Mann, B Tshishiku, Realization problems for diffeomorphism groups, from: "Breadth in contemporary topology" (editors D T Gay, W Wu), Proc. Sympos. Pure Math. 102, Amer. Math. Soc. (2019) 131

[12] V Markovic, Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007) 523 | DOI

[13] V Markovic, D Saric, The mapping class group cannot be realized by homeomorphisms, preprint (2008)

[14] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551 | DOI

[15] N Salter, B Tshishiku, On the non-realizability of braid groups by diffeomorphisms, Bull. Lond. Math. Soc. 48 (2016) 457 | DOI

Cité par Sources :