Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3–manifolds
Geometry & topology, Tome 23 (2019) no. 7, pp. 3687-3734.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove an equality which involves Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3–manifolds.

DOI : 10.2140/gt.2019.23.3687
Classification : 32Q45, 57Q10, 58J28
Keywords: Reidemeister torsion, complex volume, hyperbolic $3$–manifold

Park, Jinsung 1

1 School of Mathematics, Korea Institute for Advanced Study, Seoul, South Korea
@article{GT_2019_23_7_a9,
     author = {Park, Jinsung},
     title = {Reidemeister torsion, complex volume and the {Zograf} infinite product for hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {3687--3734},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3687},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3687/}
}
TY  - JOUR
AU  - Park, Jinsung
TI  - Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 3687
EP  - 3734
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3687/
DO  - 10.2140/gt.2019.23.3687
ID  - GT_2019_23_7_a9
ER  - 
%0 Journal Article
%A Park, Jinsung
%T Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3–manifolds
%J Geometry & topology
%D 2019
%P 3687-3734
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3687/
%R 10.2140/gt.2019.23.3687
%F GT_2019_23_7_a9
Park, Jinsung. Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3–manifolds. Geometry & topology, Tome 23 (2019) no. 7, pp. 3687-3734. doi : 10.2140/gt.2019.23.3687. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3687/

[1] L V Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, McGraw-Hill (1978)

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 | DOI

[4] J M Bismut, W Zhang, An extension of a theorem by Cheeger and Müller, 205, Soc. Math. France (1992) 235

[5] A Borel, N Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 67, Amer. Math. Soc. (2000) | DOI

[6] U Bunke, M Olbrich, Selberg zeta and theta functions: a differential operator approach, 83, Akademie (1995) 168

[7] S E Cappell, E Y Miller, Complex-valued analytic torsion for flat bundles and for holomorphic bundles with (1,1) connections, Comm. Pure Appl. Math. 63 (2010) 133 | DOI

[8] K Fedosova, The twisted Selberg trace formula and the Selberg zeta function for compact orbifolds, preprint (2015)

[9] P B Gilkey, Invariance theory, the heat equation, and the Atiyah–Singer index theorem, CRC (1995)

[10] I C Gohberg, M G Kreĭn, Introduction to the theory of linear nonselfadjoint operators, 18, Amer. Math. Soc. (1969)

[11] Y Gon, J Park, The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps, Math. Ann. 346 (2010) 719 | DOI

[12] R Goodman, N R Wallach, Representations and invariants of the classical groups, 68, Cambridge Univ. Press (1998)

[13] L Hörmander, The analysis of linear partial differential operators, I : Distribution theory and Fourier analysis, 256, Springer (1990) | DOI

[14] A Marden, Outer circles : an introduction to hyperbolic 3–manifolds, Cambridge Univ. Press (2007) | DOI

[15] Y Matsushima, S Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963) 365 | DOI

[16] A Mcintyre, J Park, Tau function and Chern–Simons invariant, Adv. Math. 262 (2014) 1 | DOI

[17] A Mcintyre, L A Takhtajan, Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker’s first limit formula, Geom. Funct. Anal. 16 (2006) 1291 | DOI

[18] P Menal-Ferrer, J Porti, Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3–manifolds, J. Topol. 7 (2014) 69 | DOI

[19] J J Millson, Closed geodesics and the η–invariant, Ann. of Math. 108 (1978) 1 | DOI

[20] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 | DOI

[21] W Müller, Analytic torsion and R–torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993) 721 | DOI

[22] W Müller, A Selberg trace formula for non-unitary twists, Int. Math. Res. Not. 2011 (2011) 2068 | DOI

[23] W Müller, The asymptotics of the Ray–Singer analytic torsion of hyperbolic 3–manifolds, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Springer (2012) 317 | DOI

[24] D Mumford, Tata lectures on theta, I, 28, Birkhäuser (1983) | DOI

[25] W D Neumann, J Yang, Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999) 29 | DOI

[26] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI

[27] J Park, Half-density volumes of representation spaces of some 3–manifolds and their application, Duke Math. J. 86 (1997) 493 | DOI

[28] J Park, Analytic torsion and Ruelle zeta functions for hyperbolic manifolds with cusps, J. Funct. Anal. 257 (2009) 1713 | DOI

[29] J Park, Reidemeister torsion, complex volume, and Zograf infinite product, preprint (2016)

[30] J Park, Reidemeister torsion, complex volume, and Zograf infinite product for hyperbolic 3–manifolds with cusps, preprint (2017)

[31] M A Shubin, Pseudodifferential operators and spectral theory, Springer (2001) | DOI

[32] P Spilioti, Selberg and Ruelle zeta functions for non-unitary twists, Ann. Global Anal. Geom. 53 (2018) 151 | DOI

[33] M E Taylor, Pseudodifferential operators, 34, Princeton Univ. Press (1981)

[34] W P Thurston, Three-dimensional geometry and topology, I, 35, Princeton Univ. Press (1997)

[35] N R Wallach, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc. 82 (1976) 171 | DOI

[36] A. Wotzke, Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten, PhD thesis, Universtät Bonn (2008)

[37] T Yoshida, The η–invariant of hyperbolic 3–manifolds, Invent. Math. 81 (1985) 473 | DOI

[38] C K Zickert, The volume and Chern–Simons invariant of a representation, Duke Math. J. 150 (2009) 489 | DOI

[39] P G Zograf, Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, Algebra i Analiz 1 (1989) 136

Cité par Sources :