The Morel–Voevodsky localization theorem in spectral algebraic geometry
Geometry & topology, Tome 23 (2019) no. 7, pp. 3647-3685.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove an analogue of the Morel–Voevodsky localization theorem over spectral algebraic spaces. As a corollary we deduce a “derived nilpotent-invariance” result which, informally speaking, says that A1–homotopy-invariance kills all higher homotopy groups of a connective commutative ring spectrum.

DOI : 10.2140/gt.2019.23.3647
Classification : 14F05, 14F42, 55P43, 55P42
Keywords: motivic homotopy theory, derived algebraic geometry, commutative ring spectra

Khan, Adeel 1

1 Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany
@article{GT_2019_23_7_a8,
     author = {Khan, Adeel},
     title = {The {Morel{\textendash}Voevodsky} localization theorem in spectral algebraic geometry},
     journal = {Geometry & topology},
     pages = {3647--3685},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3647},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/}
}
TY  - JOUR
AU  - Khan, Adeel
TI  - The Morel–Voevodsky localization theorem in spectral algebraic geometry
JO  - Geometry & topology
PY  - 2019
SP  - 3647
EP  - 3685
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/
DO  - 10.2140/gt.2019.23.3647
ID  - GT_2019_23_7_a8
ER  - 
%0 Journal Article
%A Khan, Adeel
%T The Morel–Voevodsky localization theorem in spectral algebraic geometry
%J Geometry & topology
%D 2019
%P 3647-3685
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/
%R 10.2140/gt.2019.23.3647
%F GT_2019_23_7_a8
Khan, Adeel. The Morel–Voevodsky localization theorem in spectral algebraic geometry. Geometry & topology, Tome 23 (2019) no. 7, pp. 3647-3685. doi : 10.2140/gt.2019.23.3647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/

[1] B Antieau, D Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI

[2] A Asok, M Hoyois, M Wendt, Affine representability results in A1–homotopy theory, I : Vector bundles, Duke Math. J. 166 (2017) 1923 | DOI

[3] D C Cisinski, A A Khan, Brave new motivic homotopy theory, II : Homotopy invariant K–theory, preprint (2017)

[4] D Clausen, A Mathew, N Naumann, J Noel, Descent in algebraic K–theory and a conjecture of Ausoni–Rognes, preprint (2016)

[5] D Gaitsgory, N Rozenblyum, Crystals and D–modules, Pure Appl. Math. Q. 10 (2014) 57 | DOI

[6] A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5

[7] M Hoyois, A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula, Algebr. Geom. Topol. 14 (2014) 3603 | DOI

[8] M Hoyois, The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197 | DOI

[9] A Khan, Motivic homotopy theory in derived algebraic geometry, PhD thesis, Universität Duisburg-Essen (2016)

[10] D Knutson, Algebraic spaces, 203, Springer (1971) | DOI

[11] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[12] J Lurie, Higher algebra, book project (2012)

[13] J Lurie, Spectral algebraic geometry, book project (2016)

[14] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI

[15] M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 | DOI

[16] B Toën, G Vezzosi, Homotopical algebraic geometry, II : Geometric stacks and applications, 902, Amer. Math. Soc. (2008) | DOI

[17] V Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010) 1384 | DOI

Cité par Sources :