Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove an analogue of the Morel–Voevodsky localization theorem over spectral algebraic spaces. As a corollary we deduce a “derived nilpotent-invariance” result which, informally speaking, says that –homotopy-invariance kills all higher homotopy groups of a connective commutative ring spectrum.
Khan, Adeel 1
@article{GT_2019_23_7_a8, author = {Khan, Adeel}, title = {The {Morel{\textendash}Voevodsky} localization theorem in spectral algebraic geometry}, journal = {Geometry & topology}, pages = {3647--3685}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3647}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/} }
TY - JOUR AU - Khan, Adeel TI - The Morel–Voevodsky localization theorem in spectral algebraic geometry JO - Geometry & topology PY - 2019 SP - 3647 EP - 3685 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/ DO - 10.2140/gt.2019.23.3647 ID - GT_2019_23_7_a8 ER -
Khan, Adeel. The Morel–Voevodsky localization theorem in spectral algebraic geometry. Geometry & topology, Tome 23 (2019) no. 7, pp. 3647-3685. doi : 10.2140/gt.2019.23.3647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3647/
[1] Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI
, ,[2] Affine representability results in A1–homotopy theory, I : Vector bundles, Duke Math. J. 166 (2017) 1923 | DOI
, , ,[3] Brave new motivic homotopy theory, II : Homotopy invariant K–theory, preprint (2017)
, ,[4] Descent in algebraic K–theory and a conjecture of Ausoni–Rognes, preprint (2016)
, , , ,[5] Crystals and D–modules, Pure Appl. Math. Q. 10 (2014) 57 | DOI
, ,[6] Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5
,[7] A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula, Algebr. Geom. Topol. 14 (2014) 3603 | DOI
,[8] The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197 | DOI
,[9] Motivic homotopy theory in derived algebraic geometry, PhD thesis, Universität Duisburg-Essen (2016)
,[10] Algebraic spaces, 203, Springer (1971) | DOI
,[11] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[12] Higher algebra, book project (2012)
,[13] Spectral algebraic geometry, book project (2016)
,[14] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[15] K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 | DOI
,[16] Homotopical algebraic geometry, II : Geometric stacks and applications, 902, Amer. Math. Soc. (2008) | DOI
, ,[17] Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010) 1384 | DOI
,Cité par Sources :