Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We present a family of conjectural relations in the tautological ring of the moduli spaces of stable curves which implies the strong double ramification/Dubrovin–Zhang equivalence conjecture introduced by the authors with Dubrovin (Comm. Math. Phys. 363 (2018) 191–260). Our tautological relations have the form of an equality between two different families of tautological classes, only one of which involves the double ramification cycle. We prove that both families behave the same way upon pullback and pushforward with respect to forgetting a marked point. We also prove that our conjectural relations are true in genus and and also when first pushed forward from to and then restricted to for any . Finally we show that, for semisimple CohFTs, the DR/DZ equivalence only depends on a subset of our relations, finite in each genus, which we prove for . As an application we find a new formula for the class as a linear combination of dual trees intersected with kappa- and psi-classes, and we check it for .
Buryak, Alexandr 1 ; Guéré, Jérémy 2 ; Rossi, Paolo 3
@article{GT_2019_23_7_a6, author = {Buryak, Alexandr and Gu\'er\'e, J\'er\'emy and Rossi, Paolo}, title = {DR/DZ equivalence conjecture and tautological relations}, journal = {Geometry & topology}, pages = {3537--3600}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3537/} }
TY - JOUR AU - Buryak, Alexandr AU - Guéré, Jérémy AU - Rossi, Paolo TI - DR/DZ equivalence conjecture and tautological relations JO - Geometry & topology PY - 2019 SP - 3537 EP - 3600 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3537/ DO - 10.2140/gt.2019.23.3537 ID - GT_2019_23_7_a6 ER -
%0 Journal Article %A Buryak, Alexandr %A Guéré, Jérémy %A Rossi, Paolo %T DR/DZ equivalence conjecture and tautological relations %J Geometry & topology %D 2019 %P 3537-3600 %V 23 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3537/ %R 10.2140/gt.2019.23.3537 %F GT_2019_23_7_a6
Buryak, Alexandr; Guéré, Jérémy; Rossi, Paolo. DR/DZ equivalence conjecture and tautological relations. Geometry & topology, Tome 23 (2019) no. 7, pp. 3537-3600. doi : 10.2140/gt.2019.23.3537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3537/
[1] Double ramification cycles and integrable hierarchies, Comm. Math. Phys. 336 (2015) 1085 | DOI
,[2] New approaches to hierarchies of topological type, Uspekhi Mat. Nauk 72 (2017) 63 | DOI
,[3] Tau-structure for the double ramification hierarchies, Comm. Math. Phys. 363 (2018) 191 | DOI
, , , ,[4] Integrable systems of double ramification type, Int. Math. Res. Notices (2019) | DOI
, , , ,[5] Towards a description of the double ramification hierarchy for Witten’s r–spin class, J. Math. Pures Appl. 106 (2016) 837 | DOI
, ,[6] A polynomial bracket for the Dubrovin–Zhang hierarchies, J. Differential Geom. 92 (2012) 153 | DOI
, , ,[7] Double ramification cycles and quantum integrable systems, Lett. Math. Phys. 106 (2016) 289 | DOI
, ,[8] Recursion relations for double ramification hierarchies, Comm. Math. Phys. 342 (2016) 533 | DOI
, ,[9] Integrals of ψ–classes over double ramification cycles, Amer. J. Math. 137 (2015) 699 | DOI
, , , ,[10] Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, preprint (2001)
, ,[11] Chow rings of moduli spaces of curves, I : The Chow ring of M3, Ann. of Math. 132 (1990) 331 | DOI
,[12] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173 | DOI
, ,[13] Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
, ,[14] Intersection theory on M1,4 and elliptic Gromov–Witten invariants, J. Amer. Math. Soc. 10 (1997) 973 | DOI
,[15] Topological recursion relations in genus 2, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 73
,[16] Normal functions and the geometry of moduli spaces of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 527
,[17] Topological recursive relations in H2g(Mg,n), Invent. Math. 148 (2002) 627 | DOI
,[18] Relations on Mg,n via equivariant Gromov–Witten theory of P1, preprint (2015)
,[19] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[20] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI
, ,[21] Stable maps to rational curves and the relative Jacobian, preprint (2013)
, ,[22] Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI
, , ,[23] Integrability, quantization and moduli spaces of curves, Symmetry Integrability Geom. Methods Appl. 13 (2017) | DOI
,Cité par Sources :