Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the birational geometry of moduli spaces of semistable sheaves on the projective plane via Bridgeland stability conditions. We show that the entire MMP of their moduli spaces can be run via wall-crossing. Via a description of the walls, we give a numerical description of their movable cones, along with its chamber decomposition corresponding to minimal models. As an application, we show that for primitive vectors, all birational models corresponding to open chambers in the movable cone are smooth and irreducible.
Li, Chunyi 1 ; Zhao, Xiaolei 2
@article{GT_2019_23_1_a7, author = {Li, Chunyi and Zhao, Xiaolei}, title = {Birational models of moduli spaces of coherent sheaves on the projective plane}, journal = {Geometry & topology}, pages = {347--426}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, doi = {10.2140/gt.2019.23.347}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.347/} }
TY - JOUR AU - Li, Chunyi AU - Zhao, Xiaolei TI - Birational models of moduli spaces of coherent sheaves on the projective plane JO - Geometry & topology PY - 2019 SP - 347 EP - 426 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.347/ DO - 10.2140/gt.2019.23.347 ID - GT_2019_23_1_a7 ER -
%0 Journal Article %A Li, Chunyi %A Zhao, Xiaolei %T Birational models of moduli spaces of coherent sheaves on the projective plane %J Geometry & topology %D 2019 %P 347-426 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.347/ %R 10.2140/gt.2019.23.347 %F GT_2019_23_1_a7
Li, Chunyi; Zhao, Xiaolei. Birational models of moduli spaces of coherent sheaves on the projective plane. Geometry & topology, Tome 23 (2019) no. 1, pp. 347-426. doi : 10.2140/gt.2019.23.347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.347/
[1] Strange duality for height zero moduli spaces of sheaves on P2, Michigan Math. J. 64 (2015) 569 | DOI
,[2] The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability, Adv. Math. 235 (2013) 580 | DOI
, , , ,[3] Mirror symmetry for del Pezzo surfaces : vanishing cycles and coherent sheaves, Invent. Math. 166 (2006) 537 | DOI
, , ,[4] The Torelli theorem for cubic fourfolds,
, , , , ,[5] The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011) 263 | DOI
, ,[6] MMP for moduli of sheaves on K3s via wall-crossing : nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014) 505 | DOI
, ,[7] Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014) 707 | DOI
, ,[8] The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds, Invent. Math. 206 (2016) 869 | DOI
, , ,[9] The birational geometry of moduli spaces of sheaves on the projective plane, Geom. Dedicata 173 (2014) 37 | DOI
, , ,[10] Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317 | DOI
,[11] Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI
,[12] Interpolation, Bridgeland stability and monomial schemes in the plane, J. Math. Pures Appl. 102 (2014) 930 | DOI
, ,[13] The birational geometry of the moduli spaces of sheaves on P2, from: "Proceedings of the Gökova Geometry–Topology Conference 2014" (editors S Akbulut, D Auroux, T Önder), International (2015) 114
, ,[14] The ample cone of moduli spaces of sheaves on the plane, Algebr. Geom. 3 (2016) 106 | DOI
, ,[15] The effective cone of the moduli space of sheaves on the plane, J. Eur. Math. Soc. 19 (2017) 1421 | DOI
, , ,[16] Cohomologie étale (SGA 4), 569, Springer (1977)
,[17] Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998) 5
, ,[18] Fibrés stables et fibrés exceptionnels sur P2, Ann. Sci. École Norm. Sup. 18 (1985) 193
, ,[19] Lectures on Nakajima’s quiver varieties, from: "Geometric methods in representation theory, I" (editor M Brion), Sémin. Congr. 24, Soc. Math. France (2012) 145
,[20] Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987) 115 | DOI
, ,[21] Éléments de géométrie algébrique, III : Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961) 167
,[22] Singular symplectic moduli spaces, Invent. Math. 164 (2006) 591 | DOI
, , ,[23] Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515 | DOI
,[24] Lectures on vector bundles, 54, Cambridge Univ. Press (1997)
,[25] Smoothness and Poisson structures of Bridgeland moduli spaces on Poisson surfaces, preprint (2016)
, ,[26] The minimal model program for deformations of Hilbert schemes of points on the projective plane, Algebr. Geom. 5 (2018) 328 | DOI
, ,[27] Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math. 18 (2014) 263 | DOI
,[28] Stability conditions on curves, Math. Res. Lett. 14 (2007) 657 | DOI
,[29] Lectures on Bridgeland stability, from: "Moduli of curves" (editors L Brambila Paz, C Ciliberto, E Esteves, M Melo, C Voisin), Lect. Notes Unione Mat. Ital. 21, Springer (2017) 139 | DOI
, ,[30] On the group of zero-cycles of holomorphic symplectic varieties, preprint (2017)
, ,[31] Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) 852 | DOI
,[32] Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691 | DOI
,[33] Nef and effective cones on the moduli space of torsion sheaves on the projective plane, preprint (2013)
,Cité par Sources :