Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider –manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of –actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons–Hawking type ansatz giving the geometry on an open dense set in terms a symmetric matrix of functions. This leads to particularly simple examples of explicit metrics with holonomy equal to . We prove that the multimoment maps exhibit the full orbit space topologically as a smooth four-manifold containing a trivalent graph as the image of the set of special orbits and describe these graphs in some complete examples.
Madsen, Thomas 1 ; Swann, Andrew 2
@article{GT_2019_23_7_a4, author = {Madsen, Thomas and Swann, Andrew}, title = {Toric geometry of {G2{\textendash}manifolds}}, journal = {Geometry & topology}, pages = {3459--3500}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3459}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/} }
Madsen, Thomas; Swann, Andrew. Toric geometry of G2–manifolds. Geometry & topology, Tome 23 (2019) no. 7, pp. 3459-3500. doi : 10.2140/gt.2019.23.3459. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/
[1] The topological vertex, Comm. Math. Phys. 254 (2005) 425 | DOI
, , , ,[2] Kähler reduction of metrics with holonomy G2, Comm. Math. Phys. 246 (2004) 43 | DOI
, ,[3] Moduli of coassociative submanifolds and semi-flat G2–manifolds, J. Geom. Phys. 60 (2010) 1903 | DOI
,[4] The Penrose transform : its interaction with representation theory, Clarendon (1989)
, ,[5] Complete Riemannian metrics with holonomy group G2 on deformations of cones over S3 × S3, Mat. Zametki 93 (2013) 645 | DOI
, ,[6] Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279
,[7] Einstein manifolds, 10, Springer (1987) | DOI
,[8] Complete hyper–Kähler 4n–manifolds with a local tri-Hamiltonian Rn–action, Math. Ann. 314 (1999) 505 | DOI
,[9] Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946) 776 | DOI
,[10] On a new family of complete Riemannian metrics on S3 × R4 with holonomy group G2, Sibirsk. Mat. Zh. 54 (2013) 551
,[11] Gauge theory at large N and new G2 holonomy metrics, Nuclear Phys. B 611 (2001) 179 | DOI
, , , ,[12] Metrics with exceptional holonomy, Ann. of Math. 126 (1987) 525 | DOI
,[13] On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829 | DOI
, ,[14] G2–metrics arising from non-integrable special Lagrangian fibrations, Complex Manifolds 6 (2019) 348 | DOI
,[15] Invariant torsion and G2–metrics, Complex Manifolds 2 (2015) 140 | DOI
, ,[16] Completeness in supergravity constructions, Comm. Math. Phys. 311 (2012) 191 | DOI
, , ,[17] Hypertoric manifolds and hyperkähler moment maps, from: "Special metrics and group actions in geometry" (editors S. Chiossi, A. Fino, E. Musso, F. Podestà, L. Vezzoni), Springer INdAM Ser. 23, Springer (2017) 107 | DOI
, ,[18] Brouwer degree and applications, book project (2009)
, ,[19] The multi-moment maps of the nearly Kähler S3 × S3, Geom. Dedicata 200 (2019) 351 | DOI
,[20] Adiabatic limits of co-associative Kovalev–Lefschetz fibrations, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Springer (2017) 1 | DOI
,[21] A complex from linear elasticity, from: "The proceedings of the 19th winter school ", Rend. Circ. Mat. Palermo Suppl. 63, Circolo Matematico di Palermo (2000) 23
,[22] Ricci curvature and the mechanics of solids, Austral. Math. Soc. Gaz. 37 (2010) 238
,[23] Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI
, ,[24] Hypersymplectic 4-manifolds, the G2–Laplacian flow, and extension assuming bounded scalar curvature, Duke Math. J. 167 (2018) 3533 | DOI
, ,[25] Complete non-compact G2–manifolds from asymptotically conical Calabi–Yau 3–folds, preprint (2017)
, , ,[26] Infinitely many new families of complete cohomogeneity one G2–manifolds : G2 analogues of the Taub–NUT and Eguchi–Hanson spaces, preprint (2018)
, , ,[27] Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430 | DOI
, ,[28] Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979) 291 | DOI
, ,[29] Calibrated geometries, Acta Math. 148 (1982) 47 | DOI
, ,[30] Quotients of spheres by linear actions of tori, preprint (2012)
, ,[31] Cohomogeneity one special Lagrangian 3–folds in the deformed and the resolved conifolds, Illinois J. Math. 52 (2008) 839 | DOI
, ,[32] Non-compact symplectic toric manifolds, Symmetry Integrability Geom. Methods Appl. 11 (2015) | DOI
, ,[33] Transformation groups in differential geometry, 70, Springer (1972) | DOI
,[34] A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527 | DOI
, , , ,[35] From calculus to cohomology: de Rham cohomology and characteristic classes, Cambridge Univ. Press (1997)
, ,[36] Multi-moment maps, Adv. Math. 229 (2012) 2287 | DOI
, ,[37] Closed forms and multi-moment maps, Geom. Dedicata 165 (2013) 25 | DOI
, ,[38] Differentiable invariants, Topology 16 (1977) 145 | DOI
,[39] A simple approach to Brouwer degree based on differential forms, Adv. Nonlinear Stud. 4 (2004) 535 | DOI
,[40] Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975) 63 | DOI
,[41] Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80 (1993) 151 | DOI
,[42] Twists versus modifications, Adv. Math. 303 (2016) 611 | DOI
,[43] Moment maps and toric special holonomy, talk slides (2017)
,[44] Toric geometry of G2–metrics, talk slides (2018)
,[45] Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991) 409 | DOI
,Cité par Sources :