Toric geometry of G2–manifolds
Geometry & topology, Tome 23 (2019) no. 7, pp. 3459-3500.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider G2–manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of T3–actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons–Hawking type ansatz giving the geometry on an open dense set in terms a symmetric 3 × 3 matrix of functions. This leads to particularly simple examples of explicit metrics with holonomy equal to G2. We prove that the multimoment maps exhibit the full orbit space topologically as a smooth four-manifold containing a trivalent graph as the image of the set of special orbits and describe these graphs in some complete examples.

DOI : 10.2140/gt.2019.23.3459
Classification : 53C25, 53C29, 53D20, 57R45, 70G45
Keywords: exceptional holonomy, multimoment maps, toric geometry, Gibbons–Hawking ansatz

Madsen, Thomas 1 ; Swann, Andrew 2

1 School of Computing, University of Buckingham, Buckingham, United Kingdom, Centre for Quantum Geometry of Moduli Spaces, Aarhus University, Aarhus, Denmark
2 Department of Mathematics, Centre for Quantum Geometry of Moduli Spaces and Aarhus University Centre for Digitalisation, Big Data and Data Analytics, University of Aarhus, Aarhus, Denmark
@article{GT_2019_23_7_a4,
     author = {Madsen, Thomas and Swann, Andrew},
     title = {Toric geometry of {G2{\textendash}manifolds}},
     journal = {Geometry & topology},
     pages = {3459--3500},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3459},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/}
}
TY  - JOUR
AU  - Madsen, Thomas
AU  - Swann, Andrew
TI  - Toric geometry of G2–manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 3459
EP  - 3500
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/
DO  - 10.2140/gt.2019.23.3459
ID  - GT_2019_23_7_a4
ER  - 
%0 Journal Article
%A Madsen, Thomas
%A Swann, Andrew
%T Toric geometry of G2–manifolds
%J Geometry & topology
%D 2019
%P 3459-3500
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/
%R 10.2140/gt.2019.23.3459
%F GT_2019_23_7_a4
Madsen, Thomas; Swann, Andrew. Toric geometry of G2–manifolds. Geometry & topology, Tome 23 (2019) no. 7, pp. 3459-3500. doi : 10.2140/gt.2019.23.3459. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3459/

[1] M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425 | DOI

[2] V Apostolov, S Salamon, Kähler reduction of metrics with holonomy G2, Comm. Math. Phys. 246 (2004) 43 | DOI

[3] D Baraglia, Moduli of coassociative submanifolds and semi-flat G2–manifolds, J. Geom. Phys. 60 (2010) 1903 | DOI

[4] R J Baston, M G Eastwood, The Penrose transform : its interaction with representation theory, Clarendon (1989)

[5] Y V Bazaikin, O A Bogoyavlenskaya, Complete Riemannian metrics with holonomy group G2 on deformations of cones over S3 × S3, Mat. Zametki 93 (2013) 645 | DOI

[6] M Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279

[7] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[8] R Bielawski, Complete hyper–Kähler 4n–manifolds with a local tri-Hamiltonian Rn–action, Math. Ann. 314 (1999) 505 | DOI

[9] S Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946) 776 | DOI

[10] O A Bogoyavlenskaya, On a new family of complete Riemannian metrics on S3 × R4 with holonomy group G2, Sibirsk. Mat. Zh. 54 (2013) 551

[11] A Brandhuber, J Gomis, S S Gubser, S Gukov, Gauge theory at large N and new G2 holonomy metrics, Nuclear Phys. B 611 (2001) 179 | DOI

[12] R L Bryant, Metrics with exceptional holonomy, Ann. of Math. 126 (1987) 525 | DOI

[13] R L Bryant, S M Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829 | DOI

[14] R Chihara, G2–metrics arising from non-integrable special Lagrangian fibrations, Complex Manifolds 6 (2019) 348 | DOI

[15] D Conti, T B Madsen, Invariant torsion and G2–metrics, Complex Manifolds 2 (2015) 140 | DOI

[16] V Cortés, X Han, T Mohaupt, Completeness in supergravity constructions, Comm. Math. Phys. 311 (2012) 191 | DOI

[17] A Dancer, A Swann, Hypertoric manifolds and hyperkähler moment maps, from: "Special metrics and group actions in geometry" (editors S. Chiossi, A. Fino, E. Musso, F. Podestà, L. Vezzoni), Springer INdAM Ser. 23, Springer (2017) 107 | DOI

[18] G. Dinca, J. Mawhin, Brouwer degree and applications, book project (2009)

[19] K Dixon, The multi-moment maps of the nearly Kähler S3 × S3, Geom. Dedicata 200 (2019) 351 | DOI

[20] S Donaldson, Adiabatic limits of co-associative Kovalev–Lefschetz fibrations, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Springer (2017) 1 | DOI

[21] M Eastwood, A complex from linear elasticity, from: "The proceedings of the 19th winter school ", Rend. Circ. Mat. Palermo Suppl. 63, Circolo Matematico di Palermo (2000) 23

[22] M Eastwood, Ricci curvature and the mechanics of solids, Austral. Math. Soc. Gaz. 37 (2010) 238

[23] M Fernández, A Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI

[24] J Fine, C Yao, Hypersymplectic 4-manifolds, the G2–Laplacian flow, and extension assuming bounded scalar curvature, Duke Math. J. 167 (2018) 3533 | DOI

[25] L Foscolo, M Haskins, J Nordström, Complete non-compact G2–manifolds from asymptotically conical Calabi–Yau 3–folds, preprint (2017)

[26] L Foscolo, M Haskins, J Nordström, Infinitely many new families of complete cohomogeneity one G2–manifolds : G2 analogues of the Taub–NUT and Eguchi–Hanson spaces, preprint (2018)

[27] G Gibbons, S Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430 | DOI

[28] G W Gibbons, S W Hawking, Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979) 291 | DOI

[29] R Harvey, H B Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47 | DOI

[30] M J Hughes, E Swartz, Quotients of spheres by linear actions of tori, preprint (2012)

[31] M Ionel, M Min-Oo, Cohomogeneity one special Lagrangian 3–folds in the deformed and the resolved conifolds, Illinois J. Math. 52 (2008) 839 | DOI

[32] Y Karshon, E Lerman, Non-compact symplectic toric manifolds, Symmetry Integrability Geom. Methods Appl. 11 (2015) | DOI

[33] S Kobayashi, Transformation groups in differential geometry, 70, Springer (1972) | DOI

[34] J Li, C C M Liu, K Liu, J Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527 | DOI

[35] I Madsen, J Tornehave, From calculus to cohomology: de Rham cohomology and characteristic classes, Cambridge Univ. Press (1997)

[36] T B Madsen, A Swann, Multi-moment maps, Adv. Math. 229 (2012) 2287 | DOI

[37] T B Madsen, A Swann, Closed forms and multi-moment maps, Geom. Dedicata 165 (2013) 25 | DOI

[38] J N Mather, Differentiable invariants, Topology 16 (1977) 145 | DOI

[39] J Mawhin, A simple approach to Brouwer degree based on differential forms, Adv. Nonlinear Stud. 4 (2004) 535 | DOI

[40] G W Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975) 63 | DOI

[41] M B Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80 (1993) 151 | DOI

[42] A F Swann, Twists versus modifications, Adv. Math. 303 (2016) 611 | DOI

[43] A F Swann, Moment maps and toric special holonomy, talk slides (2017)

[44] A F Swann, Toric geometry of G2–metrics, talk slides (2018)

[45] R Szőke, Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991) 409 | DOI

Cité par Sources :