The classification of Lagrangians nearby the Whitney immersion
Geometry & topology, Tome 23 (2019) no. 7, pp. 3367-3458.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Whitney immersion is a Lagrangian sphere inside the four-dimensional symplectic vector space which has a single transverse double point of Whitney self-intersection number + 1. This Lagrangian also arises as the Weinstein skeleton of the complement of a binodal cubic curve inside the projective plane, and the latter Weinstein manifold is thus the “standard” neighbourhood of Lagrangian immersions of this type. We classify the Lagrangians inside such a neighbourhood which are homologically essential, and which are either embedded or immersed with a single double point; they are shown to be Hamiltonian isotopic to either product tori, Chekanov tori, or rescalings of the Whitney immersion.

DOI : 10.2140/gt.2019.23.3367
Classification : 53D12
Keywords: nearby Lagrangian conjecture, Lagrangian fibration, Clifford torus, Chekanov torus, Whitney immersion, Whitney sphere

Dimitroglou Rizell, Georgios 1

1 Department of Mathematics, Uppsala University, Uppsala, Sweden
@article{GT_2019_23_7_a3,
     author = {Dimitroglou Rizell, Georgios},
     title = {The classification of {Lagrangians} nearby the {Whitney} immersion},
     journal = {Geometry & topology},
     pages = {3367--3458},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3367},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/}
}
TY  - JOUR
AU  - Dimitroglou Rizell, Georgios
TI  - The classification of Lagrangians nearby the Whitney immersion
JO  - Geometry & topology
PY  - 2019
SP  - 3367
EP  - 3458
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/
DO  - 10.2140/gt.2019.23.3367
ID  - GT_2019_23_7_a3
ER  - 
%0 Journal Article
%A Dimitroglou Rizell, Georgios
%T The classification of Lagrangians nearby the Whitney immersion
%J Geometry & topology
%D 2019
%P 3367-3458
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/
%R 10.2140/gt.2019.23.3367
%F GT_2019_23_7_a3
Dimitroglou Rizell, Georgios. The classification of Lagrangians nearby the Whitney immersion. Geometry & topology, Tome 23 (2019) no. 7, pp. 3367-3458. doi : 10.2140/gt.2019.23.3367. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/

[1] M Abouzaid, Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012) 251 | DOI

[2] V I Arnold, The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986) 3

[3] M Audin, F Lalonde, L Polterovich, Symplectic rigidity : Lagrangian submanifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 271 | DOI

[4] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry", Surv. Differ. Geom. 13, International (2009) 1 | DOI

[5] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[6] Y V Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996) 547 | DOI

[7] Y V Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998) 213 | DOI

[8] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589

[9] K Cieliebak, K Mohnke, Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 | DOI

[10] K Cieliebak, M Schwingenheuer, Hamiltonian unknottedness of certain monotone Lagrangian tori in S2 × S2, Pacific J. Math. 299 (2019) 427 | DOI

[11] G Dimitroglou Rizell, Uniqueness of extremal Lagrangian tori in the four-dimensional disc, from: "Proceedings of the Gökova Geometry–Topology Conference 2015" (editors S Akbulut, D Auroux, T Önder), GGT (2016) 151

[12] G Dimitroglou Rizell, E Goodman, A Ivrii, Lagrangian isotopy of tori in S2 ×S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI

[13] Y Eliashberg, E Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013) 1483 | DOI

[14] Y Eliashberg, L Polterovich, Local Lagrangian 2–knots are trivial, Ann. of Math. 144 (1996) 61 | DOI

[15] Y Eliashberg, L Polterovich, The problem of Lagrangian knots in four-manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 313

[16] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513 | DOI

[17] A Gadbled, On exotic monotone Lagrangian tori in CP2 and S2 × S2, J. Symplectic Geom. 11 (2013) 343 | DOI

[18] E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. 27 (1994) 697 | DOI

[19] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[20] R Hind, Lagrangian spheres in S2 ×S2, Geom. Funct. Anal. 14 (2004) 303 | DOI

[21] R Hind, S Lisi, Symplectic embeddings of polydisks, Selecta Math. 21 (2015) 1099 | DOI

[22] H Hofer, V Lizan, J C Sikorav, On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149 | DOI

[23] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisation, IV : Asymptotics with degeneracies, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78

[24] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 | DOI

[25] T Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013) 639 | DOI

[26] F Laudenbach, J C Sikorav, Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985) 349 | DOI

[27] L Lazzarini, Relative frames on J–holomorphic curves, J. Fixed Point Theory Appl. 9 (2011) 213 | DOI

[28] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143 | DOI

[29] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (1998)

[30] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)

[31] M Mclean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877 | DOI

[32] J Pascaleff, Floer cohomology in the mirror of the projective plane and a binodal cubic curve, Duke Math. J. 163 (2014) 2427 | DOI

[33] B Siebert, G Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. 161 (2005) 959 | DOI

[34] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[35] R Vianna, On exotic Lagrangian tori in CP2, Geom. Topol. 18 (2014) 2419 | DOI

[36] R F V Vianna, Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI

[37] A Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971) 329 | DOI

[38] C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI

Cité par Sources :