Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Whitney immersion is a Lagrangian sphere inside the four-dimensional symplectic vector space which has a single transverse double point of Whitney self-intersection number . This Lagrangian also arises as the Weinstein skeleton of the complement of a binodal cubic curve inside the projective plane, and the latter Weinstein manifold is thus the “standard” neighbourhood of Lagrangian immersions of this type. We classify the Lagrangians inside such a neighbourhood which are homologically essential, and which are either embedded or immersed with a single double point; they are shown to be Hamiltonian isotopic to either product tori, Chekanov tori, or rescalings of the Whitney immersion.
Dimitroglou Rizell, Georgios 1
@article{GT_2019_23_7_a3, author = {Dimitroglou Rizell, Georgios}, title = {The classification of {Lagrangians} nearby the {Whitney} immersion}, journal = {Geometry & topology}, pages = {3367--3458}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3367}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/} }
TY - JOUR AU - Dimitroglou Rizell, Georgios TI - The classification of Lagrangians nearby the Whitney immersion JO - Geometry & topology PY - 2019 SP - 3367 EP - 3458 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/ DO - 10.2140/gt.2019.23.3367 ID - GT_2019_23_7_a3 ER -
Dimitroglou Rizell, Georgios. The classification of Lagrangians nearby the Whitney immersion. Geometry & topology, Tome 23 (2019) no. 7, pp. 3367-3458. doi : 10.2140/gt.2019.23.3367. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3367/
[1] Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012) 251 | DOI
,[2] The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986) 3
,[3] Symplectic rigidity : Lagrangian submanifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 271 | DOI
, , ,[4] Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry", Surv. Differ. Geom. 13, International (2009) 1 | DOI
,[5] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[6] Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996) 547 | DOI
,[7] Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998) 213 | DOI
,[8] Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589
, ,[9] Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 | DOI
, ,[10] Hamiltonian unknottedness of certain monotone Lagrangian tori in S2 × S2, Pacific J. Math. 299 (2019) 427 | DOI
, ,[11] Uniqueness of extremal Lagrangian tori in the four-dimensional disc, from: "Proceedings of the Gökova Geometry–Topology Conference 2015" (editors S Akbulut, D Auroux, T Önder), GGT (2016) 151
,[12] Lagrangian isotopy of tori in S2 ×S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI
, , ,[13] Lagrangian caps, Geom. Funct. Anal. 23 (2013) 1483 | DOI
, ,[14] Local Lagrangian 2–knots are trivial, Ann. of Math. 144 (1996) 61 | DOI
, ,[15] The problem of Lagrangian knots in four-manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 313
, ,[16] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513 | DOI
,[17] On exotic monotone Lagrangian tori in CP2 and S2 × S2, J. Symplectic Geom. 11 (2013) 343 | DOI
,[18] Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. 27 (1994) 697 | DOI
,[19] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[20] Lagrangian spheres in S2 ×S2, Geom. Funct. Anal. 14 (2004) 303 | DOI
,[21] Symplectic embeddings of polydisks, Selecta Math. 21 (2015) 1099 | DOI
, ,[22] On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149 | DOI
, , ,[23] Properties of pseudoholomorphic curves in symplectisation, IV : Asymptotics with degeneracies, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78
, , ,[24] Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 | DOI
, , ,[25] Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013) 639 | DOI
,[26] Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985) 349 | DOI
, ,[27] Relative frames on J–holomorphic curves, J. Fixed Point Theory Appl. 9 (2011) 213 | DOI
,[28] The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143 | DOI
,[29] Introduction to symplectic topology, Oxford Univ. Press (1998)
, ,[30] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)
, ,[31] Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877 | DOI
,[32] Floer cohomology in the mirror of the projective plane and a binodal cubic curve, Duke Math. J. 163 (2014) 2427 | DOI
,[33] On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. 161 (2005) 959 | DOI
, ,[34] Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI
,[35] On exotic Lagrangian tori in CP2, Geom. Topol. 18 (2014) 2419 | DOI
,[36] Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI
,[37] Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971) 329 | DOI
,[38] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI
,Cité par Sources :