Moduli of stable maps in genus one and logarithmic geometry, I
Geometry & topology, Tome 23 (2019) no. 7, pp. 3315-3366.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the first in a pair of papers developing a framework for the application of logarithmic structures in the study of singular curves of genus 1. We construct a smooth and proper moduli space dominating the main component of Kontsevich’s space of stable genus 1 maps to projective space. A variation on this theme furnishes a modular interpretation for Vakil and Zinger’s famous desingularization of the Kontsevich space of maps in genus 1. Our methods also lead to smooth and proper moduli spaces of pointed genus 1 quasimaps to projective space. Finally, we present an application to the log minimal model program for ̄1,n. We construct explicit factorizations of the rational maps among Smyth’s modular compactifications of pointed elliptic curves.

DOI : 10.2140/gt.2019.23.3315
Classification : 14N35, 14D23
Keywords: stable maps, quasimaps, elliptic singularities, logarithmic geometry

Ranganathan, Dhruv 1 ; Santos-Parker, Keli 2 ; Wise, Jonathan 3

1 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
2 Department of Mathematics, University of Colorado, Boulder, CO, United States, Medical School, University of Michigan, Ann Arbor, MI, United States
3 Department of Mathematics, University of Colorado, Boulder, CO, United States
@article{GT_2019_23_7_a2,
     author = {Ranganathan, Dhruv and Santos-Parker, Keli and Wise, Jonathan},
     title = {Moduli of stable maps in genus one and logarithmic geometry, {I}},
     journal = {Geometry & topology},
     pages = {3315--3366},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3315},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/}
}
TY  - JOUR
AU  - Ranganathan, Dhruv
AU  - Santos-Parker, Keli
AU  - Wise, Jonathan
TI  - Moduli of stable maps in genus one and logarithmic geometry, I
JO  - Geometry & topology
PY  - 2019
SP  - 3315
EP  - 3366
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/
DO  - 10.2140/gt.2019.23.3315
ID  - GT_2019_23_7_a2
ER  - 
%0 Journal Article
%A Ranganathan, Dhruv
%A Santos-Parker, Keli
%A Wise, Jonathan
%T Moduli of stable maps in genus one and logarithmic geometry, I
%J Geometry & topology
%D 2019
%P 3315-3366
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/
%R 10.2140/gt.2019.23.3315
%F GT_2019_23_7_a2
Ranganathan, Dhruv; Santos-Parker, Keli; Wise, Jonathan. Moduli of stable maps in genus one and logarithmic geometry, I. Geometry & topology, Tome 23 (2019) no. 7, pp. 3315-3366. doi : 10.2140/gt.2019.23.3315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/

[1] D Abramovich, C Cadman, B Fantechi, J Wise, Expanded degenerations and pairs, Comm. Algebra 41 (2013) 2346 | DOI

[2] D Abramovich, B Hassett, Stable varieties with a twist, from: "Classification of algebraic varieties" (editors C Faber, G van der Geer, E Looijenga), Eur. Math. Soc. (2011) 1 | DOI

[3] M Artin, Théorème de changement de base pour un morphisme propre, from: "Théorie des topos et cohomologie étale des schémas, Tome 3 (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 305, Springer (1973) 79

[4] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2017)

[5] R Cavalieri, M Chan, M Ulirsch, J Wise, A moduli stack of tropical curves, preprint (2017)

[6] I Ciocan-Fontanine, B Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI

[7] Y Cooper, The geometry of stable quotients in genus one, Math. Ann. 361 (2015) 943 | DOI

[8] T Foster, D Ranganathan, M Talpo, M Ulirsch, Logarithmic Picard groups, chip firing, and the combinatorial rank, Math. Z. 291 (2019) 313 | DOI

[9] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[10] A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5

[11] A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5

[12] A Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki ", W A Benjamin (1966) 249

[13] J Hall, D Rydh, Coherent Tannaka duality and algebraicity of Hom-stacks, Algebra Number Theory 13 (2019) 1633 | DOI

[14] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[15] D Holmes, Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math. 747 (2019) 109 | DOI

[16] Y Hu, J Li, Genus-one stable maps, local equations, and Vakil–Zinger’s desingularization, Math. Ann. 348 (2010) 929 | DOI

[17] T Kajiwara, Logarithmic compactifications of the generalized Jacobian variety, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993) 473 | DOI

[18] F Kato, Exactness, integrality, and log modifications, preprint (1999)

[19] F Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000) 215 | DOI

[20] B Kim, Logarithmic stable maps, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 167 | DOI

[21] S L Kleiman, Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980) 39

[22] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[23] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting — line bundles and linear series, 48, Springer (2004) | DOI

[24] C Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI

[25] A Marian, D Oprea, R Pandharipande, The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI

[26] D Mumford, Abelian varieties, 5, Hindustan (1974)

[27] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI

[28] K S Parker, Semistable modular compactifications of moduli spaces of genus one curves, PhD thesis, University of Colorado at Boulder (2017)

[29] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019) 1765 | DOI

[30] D I Smyth, Modular compactifications of the space of pointed elliptic curves, I, Compos. Math. 147 (2011) 877 | DOI

[31] R Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101 | DOI

[32] R Vakil, A Zinger, A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53 | DOI

[33] R Vakil, A Zinger, A desingularization of the main component of the moduli space of genus-one stable maps into Pn, Geom. Topol. 12 (2008) 1 | DOI

[34] M Viscardi, Alternate compactifications of the moduli space of genus one maps, Manuscripta Math. 139 (2012) 201 | DOI

[35] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI

[36] A Zinger, A sharp compactness theorem for genus-one pseudo-holomorphic maps, Geom. Topol. 13 (2009) 2427 | DOI

Cité par Sources :