Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first in a pair of papers developing a framework for the application of logarithmic structures in the study of singular curves of genus . We construct a smooth and proper moduli space dominating the main component of Kontsevich’s space of stable genus maps to projective space. A variation on this theme furnishes a modular interpretation for Vakil and Zinger’s famous desingularization of the Kontsevich space of maps in genus . Our methods also lead to smooth and proper moduli spaces of pointed genus quasimaps to projective space. Finally, we present an application to the log minimal model program for . We construct explicit factorizations of the rational maps among Smyth’s modular compactifications of pointed elliptic curves.
Ranganathan, Dhruv 1 ; Santos-Parker, Keli 2 ; Wise, Jonathan 3
@article{GT_2019_23_7_a2, author = {Ranganathan, Dhruv and Santos-Parker, Keli and Wise, Jonathan}, title = {Moduli of stable maps in genus one and logarithmic geometry, {I}}, journal = {Geometry & topology}, pages = {3315--3366}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3315}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/} }
TY - JOUR AU - Ranganathan, Dhruv AU - Santos-Parker, Keli AU - Wise, Jonathan TI - Moduli of stable maps in genus one and logarithmic geometry, I JO - Geometry & topology PY - 2019 SP - 3315 EP - 3366 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/ DO - 10.2140/gt.2019.23.3315 ID - GT_2019_23_7_a2 ER -
%0 Journal Article %A Ranganathan, Dhruv %A Santos-Parker, Keli %A Wise, Jonathan %T Moduli of stable maps in genus one and logarithmic geometry, I %J Geometry & topology %D 2019 %P 3315-3366 %V 23 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/ %R 10.2140/gt.2019.23.3315 %F GT_2019_23_7_a2
Ranganathan, Dhruv; Santos-Parker, Keli; Wise, Jonathan. Moduli of stable maps in genus one and logarithmic geometry, I. Geometry & topology, Tome 23 (2019) no. 7, pp. 3315-3366. doi : 10.2140/gt.2019.23.3315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3315/
[1] Expanded degenerations and pairs, Comm. Algebra 41 (2013) 2346 | DOI
, , , ,[2] Stable varieties with a twist, from: "Classification of algebraic varieties" (editors C Faber, G van der Geer, E Looijenga), Eur. Math. Soc. (2011) 1 | DOI
, ,[3] Théorème de changement de base pour un morphisme propre, from: "Théorie des topos et cohomologie étale des schémas, Tome 3 (SGA )" (editors M Artin, A Grothendieck, J L Verdier), Lecture Notes in Math. 305, Springer (1973) 79
,[4] The Stacks project, electronic reference (2017)
, , ,[5] A moduli stack of tropical curves, preprint (2017)
, , , ,[6] Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI
, ,[7] The geometry of stable quotients in genus one, Math. Ann. 361 (2015) 943 | DOI
,[8] Logarithmic Picard groups, chip firing, and the combinatorial rank, Math. Z. 291 (2019) 313 | DOI
, , , ,[9] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI
, ,[10] Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5
,[11] Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5
,[12] Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki ", W A Benjamin (1966) 249
,[13] Coherent Tannaka duality and algebraicity of Hom-stacks, Algebra Number Theory 13 (2019) 1633 | DOI
, ,[14] Algebraic geometry, 52, Springer (1977) | DOI
,[15] Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math. 747 (2019) 109 | DOI
,[16] Genus-one stable maps, local equations, and Vakil–Zinger’s desingularization, Math. Ann. 348 (2010) 929 | DOI
, ,[17] Logarithmic compactifications of the generalized Jacobian variety, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993) 473 | DOI
,[18] Exactness, integrality, and log modifications, preprint (1999)
,[19] Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000) 215 | DOI
,[20] Logarithmic stable maps, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 167 | DOI
,[21] Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980) 39
,[22] Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI
, ,[23] Positivity in algebraic geometry, I : Classical setting — line bundles and linear series, 48, Springer (2004) | DOI
,[24] Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI
,[25] The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI
, , ,[26] Abelian varieties, 5, Hindustan (1974)
,[27] Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI
,[28] Semistable modular compactifications of moduli spaces of genus one curves, PhD thesis, University of Colorado at Boulder (2017)
,[29] Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019) 1765 | DOI
, , ,[30] Modular compactifications of the space of pointed elliptic curves, I, Compos. Math. 147 (2011) 877 | DOI
,[31] The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101 | DOI
,[32] A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53 | DOI
, ,[33] A desingularization of the main component of the moduli space of genus-one stable maps into Pn, Geom. Topol. 12 (2008) 1 | DOI
, ,[34] Alternate compactifications of the moduli space of genus one maps, Manuscripta Math. 139 (2012) 201 | DOI
,[35] The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI
,[36] A sharp compactness theorem for genus-one pseudo-holomorphic maps, Geom. Topol. 13 (2009) 2427 | DOI
,Cité par Sources :