Resolution of singularities and geometric proofs of the Łojasiewicz inequalities
Geometry & topology, Tome 23 (2019) no. 7, pp. 3273-3313.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Łojasiewicz inequalities for real analytic functions on Euclidean space were first proved by Stanisław Łojasiewicz (1959, 1965) using methods of semianalytic and subanalytic sets, arguments later simplified by Bierstone and Milman (1988). Here we first give an elementary geometric, coordinate-based proof of the Łojasiewicz inequalities in the special case where the function is C1 with simple normal crossings. We then prove, partly following Bierstone and Milman (1997) and using resolution of singularities for (real or complex) analytic varieties, that the gradient inequality for an arbitrary analytic function follows from the special case where it has simple normal crossings. In addition, we prove the Łojasiewicz inequalities when a function is CN and generalized Morse–Bott of order N 3; we earlier gave an elementary proof of the Łojasiewicz inequalities when a function is C2 and Morse–Bott on a Banach space.

DOI : 10.2140/gt.2019.23.3273
Classification : 32B20, 32C05, 32C18, 32C25, 58E05, 14E15, 32S45, 57R45, 58A07, 58A35
Keywords: analytic varieties, Łojasiewicz inequalities, gradient flow, Morse–Bott functions, resolution of singularities, semianalytic sets and subanalytic sets

Feehan, Paul 1

1 Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
@article{GT_2019_23_7_a1,
     author = {Feehan, Paul},
     title = {Resolution of singularities and geometric proofs of the {{\L}ojasiewicz} inequalities},
     journal = {Geometry & topology},
     pages = {3273--3313},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3273},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3273/}
}
TY  - JOUR
AU  - Feehan, Paul
TI  - Resolution of singularities and geometric proofs of the Łojasiewicz inequalities
JO  - Geometry & topology
PY  - 2019
SP  - 3273
EP  - 3313
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3273/
DO  - 10.2140/gt.2019.23.3273
ID  - GT_2019_23_7_a1
ER  - 
%0 Journal Article
%A Feehan, Paul
%T Resolution of singularities and geometric proofs of the Łojasiewicz inequalities
%J Geometry & topology
%D 2019
%P 3273-3313
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3273/
%R 10.2140/gt.2019.23.3273
%F GT_2019_23_7_a1
Feehan, Paul. Resolution of singularities and geometric proofs of the Łojasiewicz inequalities. Geometry & topology, Tome 23 (2019) no. 7, pp. 3273-3313. doi : 10.2140/gt.2019.23.3273. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3273/

[1] O M Abderrahmane, On the Łojasiewicz exponent and Newton polyhedron, Kodai Math. J. 28 (2005) 106 | DOI

[2] D Adams, L Simon, Rates of asymptotic convergence near isolated singularities of geometric extrema, Indiana Univ. Math. J. 37 (1988) 225 | DOI

[3] J M Aroca, H Hironaka, J L Vicente, The theory of the maximal contact, 29, Consejo Superior de Investigaciones Cientificas (1975) 135

[4] J M Aroca, H Hironaka, J L Vicente, Desingularization theorems, 30, Consejo Superior de Investigaciones Científicas (1977)

[5] M F Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970) 145 | DOI

[6] D M Austin, P J Braam, Morse–Bott theory and equivariant cohomology, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 123 | DOI

[7] A Banyaga, D E Hurtubise, A proof of the Morse–Bott lemma, Expo. Math. 22 (2004) 365 | DOI

[8] I N Bernstein, S I Gelfand, Meromorphy of the function Pλ, Funkcional. Anal. i Priložen. 3 (1969) 84

[9] E Bierstone, P D Milman, Resolution of singularities, from: "Several complex variables" (editors M Schneider, Y T Siu), Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press (1999) 43

[10] E Bierstone, P D Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 5 | DOI

[11] E Bierstone, P D Milman, Uniformization of analytic spaces, J. Amer. Math. Soc. 2 (1989) 801 | DOI

[12] E Bierstone, P D Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997) 207 | DOI

[13] C Bivià-Ausina, Multiplicity and Łojasiewicz exponent of generic linear sections of monomial ideals, Bull. Aust. Math. Soc. 91 (2015) 191 | DOI

[14] C Bivià-Ausina, S Encinas, Łojasiewicz exponents and resolution of singularities, Arch. Math. Basel 93 (2009) 225 | DOI

[15] C Bivià-Ausina, S Encinas, The Łojasiewicz exponent of a set of weighted homogeneous ideals, J. Pure Appl. Algebra 215 (2011) 578 | DOI

[16] C Bivià-Ausina, S Encinas, Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations, Rev. Mat. Complut. 26 (2013) 773 | DOI

[17] C Bivià-Ausina, T Fukui, Mixed Łojasiewicz exponents and log canonical thresholds of ideals, J. Pure Appl. Algebra 220 (2016) 223 | DOI

[18] R Bott, Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248 | DOI

[19] R Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959) 313 | DOI

[20] S Brzostowski, The Łojasiewicz exponent of semiquasihomogeneous singularities, Bull. Lond. Math. Soc. 47 (2015) 848 | DOI

[21] S Brzostowski, T Krasiński, G Oleksik, A conjecture on the Łojasiewicz exponent, J. Singul. 6 (2012) 124 | DOI

[22] N T N Bùi, T S Phạm, Computation of the Łojasiewicz exponent of nonnegative and nondegenerate analytic functions, Internat. J. Math. 25 (2014) | DOI

[23] R Chill, On the Łojasiewicz–Simon gradient inequality, J. Funct. Anal. 201 (2003) 572 | DOI

[24] R Chill, A Haraux, M A Jendoubi, Applications of the Łojasiewicz–Simon gradient inequality to gradient-like evolution equations, Anal. Appl. Singap. 7 (2009) 351 | DOI

[25] T H Colding, W P Minicozzi Ii, Łojasiewicz inequalities and applications, from: "Surveys in differential geometry 2014 : Regularity and evolution of nonlinear equations" (editors H D Cao, R Schoen, S T Yau), Surv. Differ. Geom. 19, International (2015) 63 | DOI

[26] T H Colding, W P Minicozzi Ii, Uniqueness of blowups and Łojasiewicz inequalities, Ann. of Math. 182 (2015) 221 | DOI

[27] T H Colding, W P Minicozzi Ii, E K Pedersen, Mean curvature flow, Bull. Amer. Math. Soc. 52 (2015) 297 | DOI

[28] T C Collins, A Greenleaf, M Pramanik, A multi-dimensional resolution of singularities with applications to analysis, Amer. J. Math. 135 (2013) 1179 | DOI

[29] S D Cutkosky, Resolution of singularities, 63, Amer. Math. Soc. (2004) | DOI

[30] D D’Acunto, K Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Polon. Math. 87 (2005) 51 | DOI

[31] C De Lellis, Łojasiewicz–Simon inequality, online resource (2013)

[32] S Encinas, O Villamayor, Good points and constructive resolution of singularities, Acta Math. 181 (1998) 109 | DOI

[33] E Faber, H Hauser, Today’s menu : geometry and resolution of singular algebraic surfaces, Bull. Amer. Math. Soc. 47 (2010) 373 | DOI

[34] P M N Feehan, Global existence and convergence of solutions to gradient systems and applications to Yang–Mills gradient flow, preprint (2016)

[35] P M N Feehan, Optimal Łojasiewicz–Simon inequalities and Morse–Bott Yang–Mills energy functions, preprint (2017)

[36] P M N Feehan, On the Morse–Bott property of analytic functions on Banach spaces with Łojasiewicz exponent one half, preprint (2018)

[37] P M N Feehan, M Maridakis, Łojasiewicz–Simon gradient inequalities for coupled Yang–Mills energy functionals, preprint (2017)

[38] P M N Feehan, M Maridakis, Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functions on Banach spaces, J. Reine Angew. Math. (2019) | DOI

[39] T Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991) 1169 | DOI

[40] A M Gabrièlov, Projections of semianalytic sets, Funkcional. Anal. i Priložen. 2 (1968) 18

[41] A Gabrièlov, Multiplicities of Pfaffian intersections, and the Łojasiewicz inequality, Selecta Math. 1 (1995) 113 | DOI

[42] H Grauert, R Remmert, Analytische Stellenalgebren, 176, Springer (1971) | DOI

[43] H Grauert, R Remmert, Coherent analytic sheaves, 265, Springer (1984) | DOI

[44] M Greenblatt, An elementary coordinate-dependent local resolution of singularities and applications, J. Funct. Anal. 255 (2008) 1957 | DOI

[45] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978) | DOI

[46] F Guaraldo, P Macrì, A Tancredi, Topics on real analytic spaces, Friedr. (1986) | DOI

[47] J Gwoździewicz, The Łojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv. 74 (1999) 364 | DOI

[48] A Haraux, Positively homogeneous functions and the Łojasiewicz gradient inequality, Ann. Polon. Math. 87 (2005) 165 | DOI

[49] A Haraux, M A Jendoubi, On the convergence of global and bounded solutions of some evolution equations, J. Evol. Equ. 7 (2007) 449 | DOI

[50] A Haraux, M A Jendoubi, The convergence problem for dissipative autonomous systems: classical methods and recent advances, Springer (2015) | DOI

[51] A Haraux, M A Jendoubi, O Kavian, Rate of decay to equilibrium in some semilinear parabolic equations, J. Evol. Equ. 3 (2003) 463 | DOI

[52] A Haraux, T S Phạm, On the gradient of quasi-homogeneous polynomials, Univ. Iagel. Acta Math. 49 (2011) 45

[53] A Haraux, T S Phạm, On the Łojasiewicz exponents of quasi-homogeneous functions, J. Singul. 11 (2015) 52 | DOI

[54] R M Hardt, Stratification of real analytic mappings and images, Invent. Math. 28 (1975) 193 | DOI

[55] R M Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976) 207 | DOI

[56] G H Hardy, J E Littlewood, G Pólya, Inequalities, Cambridge Univ. Press (1952)

[57] P Hartman, Ordinary differential equations, 38, SIAM (2002) | DOI

[58] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[59] H Hauser, The Hironaka theorem on resolution of singularities (or : A proof we always wanted to understand), Bull. Amer. Math. Soc. 40 (2003) 323 | DOI

[60] H Hironaka, On resolution of singularities (characteristic zero), from: "Proc. Internat. Congr. Mathematicians" (editor V Stenström), Inst. Mittag-Leffler (1963) 507

[61] H Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Ann. of Math. 79 (1964) 109 | DOI

[62] H Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, II, Ann. of Math. 79 (1964) 205 | DOI

[63] H Hironaka, Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L Tonelli” dell’Università di Pisa (1973)

[64] H Hironaka, Subanalytic sets, from: "Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki" (editors Y Kusunoki, H Toda, M Yamaguti, H Yoshizawa), Kinokuniya (1973) 453

[65] H Hironaka, Introduction to the theory of infinitely near singular points, 28, Consejo Superior de Investigaciones Científicas (1974)

[66] H Hironaka, Stratification and flatness, from: "Real and complex singularities", Sijthoff and Noordhoff (1977) 199

[67] T Holm, Y Karshon, The Morse–Bott–Kirwan condition is local, Res. Math. Sci. 3 (2016) | DOI

[68] L Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958) 555 | DOI

[69] S Z Huang, Gradient inequalities: with applications to asymptotic behavior and stability of gradient-like systems, 126, Amer. Math. Soc. (2006) | DOI

[70] S Ji, J Kollár, B Shiffman, A global Łojasiewicz inequality for algebraic varieties, Trans. Amer. Math. Soc. 329 (1992) 813 | DOI

[71] M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1994) | DOI

[72] F C Kirwan, Cohomology of quotients in symplectic and algebraic geometry, 31, Princeton Univ. Press (1984) | DOI

[73] J Kollár, An effective Łojasiewicz inequality for real polynomials, Period. Math. Hungar. 38 (1999) 213 | DOI

[74] J Kollár, Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)

[75] H J Kowalsky, Topologische Räume, 26, Birkhäuser (1961) 271 | DOI

[76] T Krasiński, G Oleksik, A Płoski, The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc. 137 (2009) 3387 | DOI

[77] N H Kuiper, C1–equivalence of functions near isolated critical points, from: "Symposium on infinite-dimensional topology" (editor R D Anderson), Ann. of Math. Studies 69, Princeton Univ. Press (1972) 199

[78] H H Kuo, The Morse–Palais lemma on Banach spaces, Bull. Amer. Math. Soc. 80 (1974) 363 | DOI

[79] K Kurdyka, T Mostowski, A Parusiński, Proof of the gradient conjecture of R Thom, Ann. of Math. 152 (2000) 763 | DOI

[80] K Kurdyka, A Parusiński, wf–stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 129

[81] S Lang, Real and functional analysis, 142, Springer (1993) | DOI

[82] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting — line bundles and linear series, 48, Springer (2004) | DOI

[83] A Lenarcik, On the Łojasiewicz exponent of the gradient of a holomorphic function, from: "Singularities symposium : Łojasiewicz 70" (editors B Jakubczyk, W Pawłucki, J Stasica), Banach Center Publ. 44, Polish Acad. Sci. Inst. Math. (1998) 149 | DOI

[84] A Lenarcik, On the Łojasiewicz exponent of the gradient of a polynomial function, Ann. Polon. Math. 71 (1999) 211 | DOI

[85] E Lerman, Gradient flow of the norm squared of a moment map, Enseign. Math. 51 (2005) 117

[86] B Lichtin, Estimation of Łojasiewicz exponents and Newton polygons, Invent. Math. 64 (1981) 417 | DOI

[87] J M Lion, Inégalité de Łojasiewicz en géométrie pfaffienne, Illinois J. Math. 44 (2000) 889 | DOI

[88] S Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959) 87 | DOI

[89] S Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, from: "Les équations aux dérivées partielles", Éditions du Centre National de la Recherche Scientifique (1963) 87

[90] S Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 449

[91] S Łojasiewicz, Ensembles semi-analytiques, course notes (1965)

[92] S Łojasiewicz, Sur les ensembles semi-analytiques, from: "Actes du Congrès International des Mathématiciens" (editors M Berger, J Dieudonné, J Leray, J L Lions, P Malliavin, J P Serre), Gauthiers-Villars (1971) 237

[93] S Łojasiewicz, Sur les trajectoires du gradient d’une fonction analytique, from: "Geometry seminars, 1982–1983", Univ. Stud. Bologna (1984) 115

[94] S Łojasiewicz, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier Grenoble 43 (1993) 1575 | DOI

[95] S Łojasiewicz, M A Zurro, On the gradient inequality, Bull. Polish Acad. Sci. Math. 47 (1999) 143

[96] R Narasimhan, Introduction to the theory of analytic spaces, 25, Springer (1966) | DOI

[97] L Nicolaescu, An invitation to Morse theory, Springer (2011) | DOI

[98] M Oka, Łojasiewicz exponents of non-degenerate holomorohic and mixed functions, Kodai Math. J. 41 (2018) 620 | DOI

[99] G Oleksik, The Łojasiewicz exponent of nondegenerate singularities, Univ. Iagel. Acta Math. 47 (2009) 301

[100] J Palis Jr., W De Melo, Geometric theory of dynamical systems: an introduction, Springer (1982) | DOI

[101] A Płoski, Semicontinuity of the Łojasiewicz exponent, Univ. Iagel. Acta Math. 48 (2010) 103

[102] J Råde, On the Yang–Mills heat equation in two and three dimensions, J. Reine Angew. Math. 431 (1992) 123 | DOI

[103] J J Risler, D Trotman, Bi-Lipschitz invariance of the multiplicity, Bull. London Math. Soc. 29 (1997) 200 | DOI

[104] T Rodak, S Spodzieja, Effective formulas for the local Łojasiewicz exponent, Math. Z. 268 (2011) 37 | DOI

[105] E H Rothe, Morse theory in Hilbert space, Rocky Mountain J. Math. 3 (1973) 251 | DOI

[106] L Schwartz, Division par une fonction holomorphe sur une variété analytique complexe, Summa Brasil. Math. 3 (1955) 181

[107] L Schwartz, Théorie des distributions à valeurs vectorielles, I, Ann. Inst. Fourier, Grenoble 7 (1957) 1 | DOI

[108] I R Shafarevich, Basic algebraic geometry, I: Varieties in projective space, Springer (2013) | DOI

[109] I R Shafarevich, Basic algebraic geometry, II: Schemes and complex manifolds, Springer (2013) | DOI

[110] L Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. 118 (1983) 525 | DOI

[111] L Simon, Isolated singularities of extrema of geometric variational problems, from: "Harmonic mappings and minimal immersions" (editor E Giusti), Lecture Notes in Math. 1161, Springer (1985) 206 | DOI

[112] L Simon, Theorems on regularity and singularity of energy minimizing maps, Birkhäuser (1996) | DOI

[113] K Smith, Resolution of singularities, lecture Notes (2016)

[114] K E Smith, L Kahanpää, P Kekäläinen, W Traves, An invitation to algebraic geometry, Springer (2000) | DOI

[115] P T So’N, The Łojasiewicz exponent of a continuous subanalytic function at an isolated zero, Proc. Amer. Math. Soc. 139 (2011) 1 | DOI

[116] P T So’N, An explicit bound for the Łojasiewicz exponent of real polynomials, Kodai Math. J. 35 (2012) 311 | DOI

[117] S Spodzieja, The Łojasiewicz exponent of subanalytic sets, Ann. Polon. Math. 87 (2005) 247 | DOI

[118] S Tan, S S T Yau, H Zuo, Łojasiewicz inequality for weighted homogeneous polynomial with isolated singularity, Proc. Amer. Math. Soc. 138 (2010) 3975 | DOI

[119] B Teissier, Variétés polaires, I : Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40 (1977) 267 | DOI

[120] O Villamayor, Constructiveness of Hironaka’s resolution, Ann. Sci. École Norm. Sup. 22 (1989) 1 | DOI

[121] O E Villamayor U., Patching local uniformizations, Ann. Sci. École Norm. Sup. 25 (1992) 629 | DOI

[122] J Włodarczyk, Simple Hironaka resolution in characteristic zero, J. Amer. Math. Soc. 18 (2005) 779 | DOI

[123] J Włodarczyk, Resolution of singularities of analytic spaces, from: "Proceedings of Gökova Geometry–Topology Conference 2008" (editors S Akbulut, T Önder, R J Stern), GGT (2009) 31

Cité par Sources :