Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact Kähler manifold of dimension three. We prove that there exists a projective manifold such that . We also prove the bimeromorphic existence of algebraic approximations for compact Kähler manifolds of algebraic dimension . Together with the work of Graf and the third author, this settles in particular the bimeromorphic Kodaira problem for compact Kähler threefolds.
Claudon, Benoît 1 ; Höring, Andreas 2 ; Lin, Hsueh-Yung 3
@article{GT_2019_23_7_a0, author = {Claudon, Beno{\^\i}t and H\"oring, Andreas and Lin, Hsueh-Yung}, title = {The fundamental group of compact {K\"ahler} threefolds}, journal = {Geometry & topology}, pages = {3233--3271}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2019}, doi = {10.2140/gt.2019.23.3233}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/} }
TY - JOUR AU - Claudon, Benoît AU - Höring, Andreas AU - Lin, Hsueh-Yung TI - The fundamental group of compact Kähler threefolds JO - Geometry & topology PY - 2019 SP - 3233 EP - 3271 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/ DO - 10.2140/gt.2019.23.3233 ID - GT_2019_23_7_a0 ER -
%0 Journal Article %A Claudon, Benoît %A Höring, Andreas %A Lin, Hsueh-Yung %T The fundamental group of compact Kähler threefolds %J Geometry & topology %D 2019 %P 3233-3271 %V 23 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/ %R 10.2140/gt.2019.23.3233 %F GT_2019_23_7_a0
Claudon, Benoît; Höring, Andreas; Lin, Hsueh-Yung. The fundamental group of compact Kähler threefolds. Geometry & topology, Tome 23 (2019) no. 7, pp. 3233-3271. doi : 10.2140/gt.2019.23.3233. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/
[1] Homomorphisms between Kähler groups, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 95 | DOI
,[2] Compact complex surfaces, 4, Springer (2004) | DOI
, , , ,[3] Virtually abelian Kähler and projective groups, Abh. Math. Semin. Univ. Hambg. 81 (2011) 191 | DOI
, ,[4] Le nombre minimum de fibres singulières d’une courbe stable sur P1, from: "Seminar on pencils of curves of genus at least two", Astérisque 86, Soc. Math. France (1981) 97
,[5] On deformations of Kähler spaces, I, Math. Z. 182 (1983) 505 | DOI
,[6] Cohomology of groups, 87, Springer (1982) | DOI
,[7] Fundamental group and pluridifferentials on compact Kähler manifolds, Mosc. Math. J. 16 (2016) 651 | DOI
, ,[8] Algebraic deformations of compact Kähler surfaces, Math. Z. 253 (2006) 453 | DOI
,[9] Algebraic deformations of compact Kähler surfaces, II, Math. Z. 258 (2008) 493 | DOI
,[10] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994) 255 | DOI
,[11] Negativity of compact curves in infinite covers of projective surfaces, J. Algebraic Geom. 7 (1998) 673
,[12] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier Grenoble 54 (2004) 499 | DOI
,[13] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011) 809 | DOI
,[14] Abelianity conjecture for special compact Kähler 3–folds, Proc. Edinb. Math. Soc. 57 (2014) 55 | DOI
, ,[15] Représentations linéaires des groups kählériens et de leurs analogues projectifs, J. Éc. polytech. Math. 1 (2014) 331 | DOI
, , ,[16] Représentations linéaires des groupes kählériens : factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015) 351 | DOI
, , ,[17] Complex threefolds with non-trivial holomorphic 2–forms, J. Algebraic Geom. 9 (2000) 223
, ,[18] Compact Kähler threefolds of π1–general type, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 1 | DOI
, ,[19] Invariance de la Γ–dimension pour certaines familles kählériennes de dimension 3, Math. Z. 266 (2010) 265 | DOI
,[20] Smooth families of tori and linear Kähler groups, Ann. Fac. Sci. Toulouse Math. 27 (2018) 477 | DOI
,[21] Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, 19, Soc. Math. France (1985) 124
,[22] On locally trivial deformations, Publ. Res. Inst. Math. Sci. 23 (1987) 627 | DOI
, ,[23] Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978) 1 | DOI
,[24] A canonical bundle formula, J. Differential Geom. 56 (2000) 167 | DOI
, ,[25] Algebraic approximation of Kähler threefolds of Kodaira dimension zero, Math. Ann. 371 (2018) 487 | DOI
,[26] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331 | DOI
,[27] Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties, Compos. Math. 146 (2010) 193 | DOI
, , ,[28] Algebraic geometry, 52, Springer (1977) | DOI
,[29] Minimal models for Kähler threefolds, Invent. Math. 203 (2016) 217 | DOI
, ,[30] Cohomology of sheaves, Springer (1986) | DOI
,[31] On compact complex analytic surfaces, I, Ann. of Math. 71 (1960) 111 | DOI
,[32] On compact analytic surfaces, II, Ann. of Math. 77 (1963) 563 | DOI
,[33] On compact analytic surfaces, III, Ann. of Math. 78 (1963) 1 | DOI
,[34] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993) 177 | DOI
,[35] Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)
,[36] Positivity in algebraic geometry, I : Classical setting — line bundles and linear series, 48, Springer (2004) | DOI
,[37] Algebraic approximations of compact Kähler threefolds, preprint (2017)
,[38] Algebraic approximations of fibrations in abelian varieties over a curve, preprint (2018)
,[39] On Weierstrass models, from: "Algebraic geometry and commutative algebra, II" (editors H Hijikata, H Hironaka, M Maruyama, H Matsumura, M Miyanishi, T Oda, K Ueno), Kinokuniya (1988) 405 | DOI
,[40] Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. 38 (2002) 451 | DOI
,[41] Local structure of an elliptic fibration, from: "Higher dimensional birational geometry" (editors S Mori, Y Miyaoka), Adv. Stud. Pure Math. 35, Math. Soc. Japan (2002) 185 | DOI
,[42] Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI
,[43] Deformations of algebraic schemes, 334, Springer (2006) | DOI
,[44] Sur la topologie des variétés algébriques en caractéristique p, from: "Symposium internacional de topología algebraica International symposium on algebraic topology", Universidad Nacional Autónoma de México (1958) 24
,[45] Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 | DOI
,[46] Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003) 825 | DOI
,[47] Classification theory of algebraic varieties and compact complex spaces, 439, Springer (1975) | DOI
,[48] Théorie de Hodge et géométrie algébrique complexe, 10, Soc. Math. France (2002) | DOI
,[49] On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004) 329 | DOI
,[50] On the homotopy types of Kähler manifolds and the birational Kodaira problem, J. Differential Geom. 72 (2006) 43 | DOI
,[51] Resolution of singularities of analytic spaces, from: "Proceedings of Gökova Geometry–Topology Conference 2008" (editors S Akbulut, T Önder, R J Stern), GGT (2009) 31
,[52] Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric, Ann. of Math. 109 (1979) 415 | DOI
,Cité par Sources :