The fundamental group of compact Kähler threefolds
Geometry & topology, Tome 23 (2019) no. 7, pp. 3233-3271.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a compact Kähler manifold of dimension three. We prove that there exists a projective manifold Y such that π1(X) π1(Y ). We also prove the bimeromorphic existence of algebraic approximations for compact Kähler manifolds of algebraic dimension dimX 1. Together with the work of Graf and the third author, this settles in particular the bimeromorphic Kodaira problem for compact Kähler threefolds.

DOI : 10.2140/gt.2019.23.3233
Classification : 14D07, 32J17, 32J27, 32Q55
Keywords: fundamental group, compact Kähler manifolds, algebraic approximations, elliptic fibrations

Claudon, Benoît 1 ; Höring, Andreas 2 ; Lin, Hsueh-Yung 3

1 Université Rennes 1, IRMAR-UMR 6625, Rennes, France, Institut Universitaire de France
2 Université Côte d’Azur, CNRS, Laboratoire Jean-Alexandre Dieudonné, Nice, France, Institut Universitaire de France
3 Mathematisches Institut der Universität Bonn, Bonn, Germany
@article{GT_2019_23_7_a0,
     author = {Claudon, Beno{\^\i}t and H\"oring, Andreas and Lin, Hsueh-Yung},
     title = {The fundamental group of compact {K\"ahler} threefolds},
     journal = {Geometry & topology},
     pages = {3233--3271},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2019},
     doi = {10.2140/gt.2019.23.3233},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/}
}
TY  - JOUR
AU  - Claudon, Benoît
AU  - Höring, Andreas
AU  - Lin, Hsueh-Yung
TI  - The fundamental group of compact Kähler threefolds
JO  - Geometry & topology
PY  - 2019
SP  - 3233
EP  - 3271
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/
DO  - 10.2140/gt.2019.23.3233
ID  - GT_2019_23_7_a0
ER  - 
%0 Journal Article
%A Claudon, Benoît
%A Höring, Andreas
%A Lin, Hsueh-Yung
%T The fundamental group of compact Kähler threefolds
%J Geometry & topology
%D 2019
%P 3233-3271
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/
%R 10.2140/gt.2019.23.3233
%F GT_2019_23_7_a0
Claudon, Benoît; Höring, Andreas; Lin, Hsueh-Yung. The fundamental group of compact Kähler threefolds. Geometry & topology, Tome 23 (2019) no. 7, pp. 3233-3271. doi : 10.2140/gt.2019.23.3233. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3233/

[1] D Arapura, Homomorphisms between Kähler groups, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 95 | DOI

[2] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, 4, Springer (2004) | DOI

[3] O Baues, J Riesterer, Virtually abelian Kähler and projective groups, Abh. Math. Semin. Univ. Hambg. 81 (2011) 191 | DOI

[4] A Beauville, Le nombre minimum de fibres singulières d’une courbe stable sur P1, from: "Seminar on pencils of curves of genus at least two", Astérisque 86, Soc. Math. France (1981) 97

[5] J Bingener, On deformations of Kähler spaces, I, Math. Z. 182 (1983) 505 | DOI

[6] K S Brown, Cohomology of groups, 87, Springer (1982) | DOI

[7] Y Brunebarbe, F Campana, Fundamental group and pluridifferentials on compact Kähler manifolds, Mosc. Math. J. 16 (2016) 651 | DOI

[8] N Buchdahl, Algebraic deformations of compact Kähler surfaces, Math. Z. 253 (2006) 453 | DOI

[9] N Buchdahl, Algebraic deformations of compact Kähler surfaces, II, Math. Z. 258 (2008) 493 | DOI

[10] F Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994) 255 | DOI

[11] F Campana, Negativity of compact curves in infinite covers of projective surfaces, J. Algebraic Geom. 7 (1998) 673

[12] F Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier Grenoble 54 (2004) 499 | DOI

[13] F Campana, Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011) 809 | DOI

[14] F Campana, B Claudon, Abelianity conjecture for special compact Kähler 3–folds, Proc. Edinb. Math. Soc. 57 (2014) 55 | DOI

[15] F Campana, B Claudon, P Eyssidieux, Représentations linéaires des groups kählériens et de leurs analogues projectifs, J. Éc. polytech. Math. 1 (2014) 331 | DOI

[16] F Campana, B Claudon, P Eyssidieux, Représentations linéaires des groupes kählériens : factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015) 351 | DOI

[17] F Campana, T Peternell, Complex threefolds with non-trivial holomorphic 2–forms, J. Algebraic Geom. 9 (2000) 223

[18] F Campana, Q Zhang, Compact Kähler threefolds of π1–general type, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 1 | DOI

[19] B Claudon, Invariance de la Γ–dimension pour certaines familles kählériennes de dimension 3, Math. Z. 266 (2010) 265 | DOI

[20] B Claudon, Smooth families of tori and linear Kähler groups, Ann. Fac. Sci. Toulouse Math. 27 (2018) 477 | DOI

[21] J P Demailly, Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, 19, Soc. Math. France (1985) 124

[22] H Flenner, S Kosarew, On locally trivial deformations, Publ. Res. Inst. Math. Sci. 23 (1987) 627 | DOI

[23] A Fujiki, Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978) 1 | DOI

[24] O Fujino, S Mori, A canonical bundle formula, J. Differential Geom. 56 (2000) 167 | DOI

[25] P Graf, Algebraic approximation of Kähler threefolds of Kodaira dimension zero, Math. Ann. 371 (2018) 487 | DOI

[26] H Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331 | DOI

[27] D Greb, S Kebekus, S J Kovács, Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties, Compos. Math. 146 (2010) 193 | DOI

[28] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[29] A Höring, T Peternell, Minimal models for Kähler threefolds, Invent. Math. 203 (2016) 217 | DOI

[30] B Iversen, Cohomology of sheaves, Springer (1986) | DOI

[31] K Kodaira, On compact complex analytic surfaces, I, Ann. of Math. 71 (1960) 111 | DOI

[32] K Kodaira, On compact analytic surfaces, II, Ann. of Math. 77 (1963) 563 | DOI

[33] K Kodaira, On compact analytic surfaces, III, Ann. of Math. 78 (1963) 1 | DOI

[34] J Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993) 177 | DOI

[35] J Kollár, Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)

[36] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting — line bundles and linear series, 48, Springer (2004) | DOI

[37] H Y Lin, Algebraic approximations of compact Kähler threefolds, preprint (2017)

[38] H Y Lin, Algebraic approximations of fibrations in abelian varieties over a curve, preprint (2018)

[39] N Nakayama, On Weierstrass models, from: "Algebraic geometry and commutative algebra, II" (editors H Hijikata, H Hironaka, M Maruyama, H Matsumura, M Miyanishi, T Oda, K Ueno), Kinokuniya (1988) 405 | DOI

[40] N Nakayama, Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. 38 (2002) 451 | DOI

[41] N Nakayama, Local structure of an elliptic fibration, from: "Higher dimensional birational geometry" (editors S Mori, Y Miyaoka), Adv. Stud. Pure Math. 35, Math. Soc. Japan (2002) 185 | DOI

[42] Y Namikawa, Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI

[43] E Sernesi, Deformations of algebraic schemes, 334, Springer (2006) | DOI

[44] J P Serre, Sur la topologie des variétés algébriques en caractéristique p, from: "Symposium internacional de topología algebraica International symposium on algebraic topology", Universidad Nacional Autónoma de México (1958) 24

[45] Y T Siu, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 | DOI

[46] S Takayama, Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003) 825 | DOI

[47] K Ueno, Classification theory of algebraic varieties and compact complex spaces, 439, Springer (1975) | DOI

[48] C Voisin, Théorie de Hodge et géométrie algébrique complexe, 10, Soc. Math. France (2002) | DOI

[49] C Voisin, On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004) 329 | DOI

[50] C Voisin, On the homotopy types of Kähler manifolds and the birational Kodaira problem, J. Differential Geom. 72 (2006) 43 | DOI

[51] J Włodarczyk, Resolution of singularities of analytic spaces, from: "Proceedings of Gökova Geometry–Topology Conference 2008" (editors S Akbulut, T Önder, R J Stern), GGT (2009) 31

[52] S Zucker, Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric, Ann. of Math. 109 (1979) 415 | DOI

Cité par Sources :