Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the fundamental group of an open –manifold of nonnegative Ricci curvature. We show that if there is an integer such that any tangent cone at infinity of the Riemannian universal cover of is a metric cone whose maximal Euclidean factor has dimension , then is finitely generated. In particular, this confirms the Milnor conjecture for a manifold whose universal cover has Euclidean volume growth and a unique tangent cone at infinity.
Pan, Jiayin 1
@article{GT_2019_23_6_a9, author = {Pan, Jiayin}, title = {Nonnegative {Ricci} curvature, stability at infinity and finite generation of fundamental groups}, journal = {Geometry & topology}, pages = {3203--3231}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2019}, doi = {10.2140/gt.2019.23.3203}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3203/} }
TY - JOUR AU - Pan, Jiayin TI - Nonnegative Ricci curvature, stability at infinity and finite generation of fundamental groups JO - Geometry & topology PY - 2019 SP - 3203 EP - 3231 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3203/ DO - 10.2140/gt.2019.23.3203 ID - GT_2019_23_6_a9 ER -
%0 Journal Article %A Pan, Jiayin %T Nonnegative Ricci curvature, stability at infinity and finite generation of fundamental groups %J Geometry & topology %D 2019 %P 3203-3231 %V 23 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3203/ %R 10.2140/gt.2019.23.3203 %F GT_2019_23_6_a9
Pan, Jiayin. Nonnegative Ricci curvature, stability at infinity and finite generation of fundamental groups. Geometry & topology, Tome 23 (2019) no. 6, pp. 3203-3231. doi : 10.2140/gt.2019.23.3203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3203/
[1] On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990) 41 | DOI
,[2] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 | DOI
, ,[3] On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 | DOI
, ,[4] On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 | DOI
, ,[5] Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI
,[6] Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173 | DOI
, ,[7] Characterization of tangent cones of noncollapsed limits with lower Ricci bounds and applications, Geom. Funct. Anal. 23 (2013) 134 | DOI
, ,[8] The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992) 253 | DOI
, ,[9] Almost flat manifolds, J. Differential Geometry 13 (1978) 231 | DOI
,[10] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) | DOI
,[11] How to conjugate C1–close group actions, Math. Z. 132 (1973) 11 | DOI
, ,[12] Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. 124 (1986) 1 | DOI
,[13] 3–Manifolds with nonnegative Ricci curvature, Invent. Math. 193 (2013) 367 | DOI
,[14] Margulis lemma for compact Lie groups, Math. Z. 258 (2008) 395 | DOI
, , ,[15] A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1 | DOI
,[16] Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961) 362 | DOI
,[17] A proof of Milnor conjecture in dimension 3, J. Reine Angew. Math. (2018) | DOI
,[18] Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, J. Differential Geom. 54 (2000) 547 | DOI
,[19] On fundamental groups of manifolds of nonnegative curvature, Differential Geom. Appl. 13 (2000) 129 | DOI
,Cité par Sources :