Metric-minimizing surfaces revisited
Geometry & topology, Tome 23 (2019) no. 6, pp. 3111-3139 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

A surface that does not admit a length nonincreasing deformation is called metric-minimizing. We show that metric-minimizing surfaces in CAT(0) spaces are locally CAT(0) with respect to their length metrics.

DOI : 10.2140/gt.2019.23.3111
Classification : 53C23, 53C43, 53C45, 30L05
Keywords: metric-minimizing surfaces, intrinsic metric

Petrunin, Anton 1 ; Stadler, Stephan 2

1 Department of Mathematics, Pennsylvania State University, University Park, PA, United States
2 Mathematisches Institut der Universität München, München, Germany
@article{10_2140_gt_2019_23_3111,
     author = {Petrunin, Anton and Stadler, Stephan},
     title = {Metric-minimizing surfaces revisited},
     journal = {Geometry & topology},
     pages = {3111--3139},
     year = {2019},
     volume = {23},
     number = {6},
     doi = {10.2140/gt.2019.23.3111},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3111/}
}
TY  - JOUR
AU  - Petrunin, Anton
AU  - Stadler, Stephan
TI  - Metric-minimizing surfaces revisited
JO  - Geometry & topology
PY  - 2019
SP  - 3111
EP  - 3139
VL  - 23
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3111/
DO  - 10.2140/gt.2019.23.3111
ID  - 10_2140_gt_2019_23_3111
ER  - 
%0 Journal Article
%A Petrunin, Anton
%A Stadler, Stephan
%T Metric-minimizing surfaces revisited
%J Geometry & topology
%D 2019
%P 3111-3139
%V 23
%N 6
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3111/
%R 10.2140/gt.2019.23.3111
%F 10_2140_gt_2019_23_3111
Petrunin, Anton; Stadler, Stephan. Metric-minimizing surfaces revisited. Geometry & topology, Tome 23 (2019) no. 6, pp. 3111-3139. doi: 10.2140/gt.2019.23.3111

[1] A D Aleksandrov, Ruled surfaces in metric spaces, Vestnik Leningrad. Univ. 12 (1957) 5

[2] S B Alexander, R L Bishop, Gauss equation and injectivity radii for subspaces in spaces of curvature bounded above, Geom. Dedicata 117 (2006) 65 | DOI

[3] S Alexander, V Kapovitch, A Petrunin, An invitation to Alexandrov geometry : CAT(0) spaces, Springer (2019) | DOI

[4] T Banakh, Running most of the time in a connected set, MathOverflow post (2018)

[5] A Bressan, Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem, 20, Oxford Univ. Press (2000)

[6] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[7] R J Daverman, Decompositions of manifolds, 124, Academic (1986)

[8] M Gromov, Singularities, expanders and topology of maps, I : Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009) 743 | DOI

[9] A N Kolmogorov, S V Fomin, Элементю теории функщии и функщионального анализа, Izdat. “Nauka” (1976) 543

[10] N J Korevaar, R M Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI

[11] U Lang, V Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997) 535 | DOI

[12] E Le Donne, Lipschitz and path isometric embeddings of metric spaces, Geom. Dedicata 166 (2013) 47 | DOI

[13] A Lytchak, On the geometry of subsets of positive reach, Manuscripta Math. 115 (2004) 199 | DOI

[14] A Lytchak, S Stadler, Conformal deformations of CAT(0) spaces, Math. Ann. 373 (2019) 155 | DOI

[15] A Lytchak, S Wenger, Area minimizing discs in metric spaces, Arch. Ration. Mech. Anal. 223 (2017) 1123 | DOI

[16] A Lytchak, S Wenger, Intrinsic structure of minimal discs in metric spaces, Geom. Topol. 22 (2018) 591 | DOI

[17] A Lytchak, S Wenger, Isoperimetric characterization of upper curvature bounds, Acta Math. 221 (2018) 159 | DOI

[18] C Mese, The curvature of minimal surfaces in singular spaces, Comm. Anal. Geom. 9 (2001) 3 | DOI

[19] R L Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925) 416 | DOI

[20] A Petrunin, Metric minimizing surfaces, Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 47 | DOI

[21] A Petrunin, Intrinsic isometries in Euclidean space, Algebra i Analiz 22 (2010) 140

[22] A Petrunin, Correction to : Metric minimizing surfaces, Electron. Res. Announc. Math. Sci. 25 (2018) 96 | DOI

[23] A Petrunin, S Stadler, Monotonicity of saddle maps, Geom. Dedicata 198 (2019) 181 | DOI

[24] S Z Shefel, On the intrinsic geometry of saddle surfaces, Sibirsk. Mat. Ž. 5 (1964) 1382

[25] S Z Shefel, On saddle surfaces bounded by a rectifiable curve, Dokl. Akad. Nauk SSSR 162 (1965) 294

[26] S Stadler, The structure of minimal surfaces in CAT(0) spaces, preprint (2018)

Cité par Sources :