Contact integral geometry and the Heisenberg algebra
Geometry & topology, Tome 23 (2019) no. 6, pp. 3041-3110.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Generalizing Weyl’s tube formula and building on Chern’s work, Alesker reinterpreted the Lipschitz–Killing curvature integrals as a family of valuations (finitely additive measures with good analytic properties), attached canonically to any Riemannian manifold, which is universal with respect to isometric embeddings. We uncover a similar structure for contact manifolds. Namely, we show that a contact manifold admits a canonical family of generalized valuations, which are universal under contact embeddings. Those valuations assign numerical invariants to even-dimensional submanifolds, which in a certain sense measure the curvature at points of tangency to the contact structure. Moreover, these valuations generalize to the class of manifolds equipped with the structure of a Heisenberg algebra on their cotangent bundle. Pursuing the analogy with Euclidean integral geometry, we construct symplectic-invariant distributions on Grassmannians to produce Crofton formulas on the contact sphere. Using closely related distributions, we obtain Crofton formulas also in the linear symplectic space.

DOI : 10.2140/gt.2019.23.3041
Classification : 52A39, 53A55, 53C65, 53D10, 53D05, 53D15
Keywords: contact manifold, Crofton formula, Heisenberg algebra, Lipschitz Killing curvatures, Weyl principle, intrinsic volumes

Faifman, Dmitry 1

1 Centre de Recherches Mathématiques, Université de Montréal, Montréal, QC, Canada
@article{GT_2019_23_6_a6,
     author = {Faifman, Dmitry},
     title = {Contact integral geometry and the {Heisenberg} algebra},
     journal = {Geometry & topology},
     pages = {3041--3110},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.3041},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/}
}
TY  - JOUR
AU  - Faifman, Dmitry
TI  - Contact integral geometry and the Heisenberg algebra
JO  - Geometry & topology
PY  - 2019
SP  - 3041
EP  - 3110
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/
DO  - 10.2140/gt.2019.23.3041
ID  - GT_2019_23_6_a6
ER  - 
%0 Journal Article
%A Faifman, Dmitry
%T Contact integral geometry and the Heisenberg algebra
%J Geometry & topology
%D 2019
%P 3041-3110
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/
%R 10.2140/gt.2019.23.3041
%F GT_2019_23_6_a6
Faifman, Dmitry. Contact integral geometry and the Heisenberg algebra. Geometry & topology, Tome 23 (2019) no. 6, pp. 3041-3110. doi : 10.2140/gt.2019.23.3041. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/

[1] A Abbondandolo, B Bramham, U L Hryniewicz, P A S Salomão, A systolic inequality for geodesic flows on the two-sphere, Math. Ann. 367 (2017) 701 | DOI

[2] S Alesker, Description of translation invariant valuations on convex sets with solution of P McMullen’s conjecture, Geom. Funct. Anal. 11 (2001) 244 | DOI

[3] S Alesker, The multiplicative structure on continuous polynomial valuations, Geom. Funct. Anal. 14 (2004) 1 | DOI

[4] S Alesker, Theory of valuations on manifolds, I : Linear spaces, Israel J. Math. 156 (2006) 311 | DOI

[5] S Alesker, Theory of valuations on manifolds, II, Adv. Math. 207 (2006) 420 | DOI

[6] S Alesker, Theory of valuations on manifolds, IV : New properties of the multiplicative structure, from: "Geometric aspects of functional analysis" (editors V D Milman, G Schechtman), Lecture Notes in Math. 1910, Springer (2007) 1 | DOI

[7] S Alesker, Valuations on manifolds and integral geometry, Geom. Funct. Anal. 20 (2010) 1073 | DOI

[8] S Alesker, A Bernig, The product on smooth and generalized valuations, Amer. J. Math. 134 (2012) 507 | DOI

[9] S Alesker, D Faifman, Convex valuations invariant under the Lorentz group, J. Differential Geom. 98 (2014) 183

[10] S Alesker, J H G Fu, Theory of valuations on manifolds, III : Multiplicative structure in the general case, Trans. Amer. Math. Soc. 360 (2008) 1951 | DOI

[11] S Alesker, J H G Fu, Integral geometry and valuations, Springer (2014) | DOI

[12] J C Álvarez Paiva, Dual spheres have the same girth, Amer. J. Math. 128 (2006) 361

[13] J C Álvarez Paiva, F Balacheff, Contact geometry and isosystolic inequalities, Geom. Funct. Anal. 24 (2014) 648 | DOI

[14] J C Álvarez Paiva, F Balacheff, K Tzanev, Isosystolic inequalities for optical hypersurfaces, Adv. Math. 301 (2016) 934 | DOI

[15] S Artstein-Avidan, R Karasev, Y Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J. 163 (2014) 2003 | DOI

[16] S Artstein-Avidan, V Milman, Y Ostrover, The M–ellipsoid, symplectic capacities and volume, Comment. Math. Helv. 83 (2008) 359 | DOI

[17] A Bernig, A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line, Comment. Math. Helv. 84 (2009) 1 | DOI

[18] A Bernig, L Bröcker, Valuations on manifolds and Rumin cohomology, J. Differential Geom. 75 (2007) 433

[19] A Bernig, D Faifman, Valuation theory of indefinite orthogonal groups, J. Funct. Anal. 273 (2017) 2167 | DOI

[20] A Bernig, J H G Fu, Hermitian integral geometry, Ann. of Math. 173 (2011) 907 | DOI

[21] A Bernig, J H G Fu, G Solanes, Integral geometry of complex space forms, Geom. Funct. Anal. 24 (2014) 403 | DOI

[22] A Bernig, G Solanes, Classification of invariant valuations on the quaternionic plane, J. Funct. Anal. 267 (2014) 2933 | DOI

[23] A Bernig, G Solanes, Kinematic formulas on the quaternionic plane, Proc. Lond. Math. Soc. 115 (2017) 725 | DOI

[24] A Bernig, F Voide, Spin-invariant valuations on the octonionic plane, Israel J. Math. 214 (2016) 831 | DOI

[25] S Caracciolo, A D Sokal, A Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and Pfaffians, Adv. in Appl. Math. 50 (2013) 474 | DOI

[26] S S Chern, R S Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, from: "Workshop Bonn 1984" (editors F Hirzebruch, J Schwermer, S Suter), Lecture Notes in Math. 1111, Springer (1985) 279 | DOI

[27] H Donnelly, Heat equation and the volume of tubes, Invent. Math. 29 (1975) 239 | DOI

[28] D Faifman, An extension of Schäffer’s dual girth conjecture to Grassmannians, J. Differential Geom. 92 (2012) 201

[29] D Faifman, Crofton formulas and indefinite signature, Geom. Funct. Anal. 27 (2017) 489 | DOI

[30] J H G Fu, T Wannerer, Riemannian curvature measures, Geom. Funct. Anal. 29 (2019) 343 | DOI

[31] I M Gelfand, M M Smirnov, Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials, Adv. Math. 109 (1994) 188 | DOI

[32] E D Gluskin, Y Ostrover, Asymptotic equivalence of symplectic capacities, Comment. Math. Helv. 91 (2016) 131 | DOI

[33] D Gourevitch, S Sahi, E Sayag, Invariant functionals on Speh representations, Transform. Groups 20 (2015) 1023 | DOI

[34] V Guillemin, S Sternberg, Geometric asymptotics, 14, Amer. Math. Soc. (1977)

[35] H Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer (1957) | DOI

[36] L Hörmander, The analysis of linear partial differential operators, I : Distribution theory and Fourier analysis, 256, Springer (1990) | DOI

[37] D A Klain, Even valuations on convex bodies, Trans. Amer. Math. Soc. 352 (2000) 71 | DOI

[38] A Koldobsky, D Ryabogin, A Zvavitch, Projections of convex bodies and the Fourier transform, Israel J. Math. 139 (2004) 361 | DOI

[39] J A C Kolk, V S Varadarajan, On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. 7 (1996) 67 | DOI

[40] M Ludwig, M Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999) 138 | DOI

[41] M Ludwig, M Reitzner, A classification of SL(n) invariant valuations, Ann. of Math. 172 (2010) 1219 | DOI

[42] P Mcmullen, Valuations and Euler-type relations on certain classes of convex polytopes, Proc. London Math. Soc. 35 (1977) 113 | DOI

[43] M Muro, Singular invariant hyperfunctions on the square matrix space and the alternating matrix space, Nagoya Math. J. 169 (2003) 19 | DOI

[44] Y Ostrover, When symplectic topology meets Banach space geometry, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 959

[45] V Ovsienko, Vector fields in the presence of a contact structure, Enseign. Math. 52 (2006) 215

[46] R Ponge, The tangent groupoid of a Heisenberg manifold, Pacific J. Math. 227 (2006) 151 | DOI

[47] R S Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, 906, Amer. Math. Soc. (2008) | DOI

[48] B L Reinhart, The second fundamental form of a plane field, J. Differential Geom. 12 (1977) 619

[49] M Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994) 281

[50] R Schneider, Convex bodies : the Brunn–Minkowski theory, 151, Cambridge Univ. Press (2014) | DOI

[51] G Solanes, T Wannerer, Integral geometry of exceptional spheres, preprint (2017)

[52] H Tasaki, Generalization of Kähler angle and integral geometry in complex projective spaces, from: "Steps in differential geometry" (editors L Kozma, P T Nagy, L Tamássy), Inst. Math. Inform. (2001) 349

[53] C Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000) 411 | DOI

[54] H Weyl, On the volume of tubes, Amer. J. Math. 61 (1939) 461 | DOI

Cité par Sources :