Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Generalizing Weyl’s tube formula and building on Chern’s work, Alesker reinterpreted the Lipschitz–Killing curvature integrals as a family of valuations (finitely additive measures with good analytic properties), attached canonically to any Riemannian manifold, which is universal with respect to isometric embeddings. We uncover a similar structure for contact manifolds. Namely, we show that a contact manifold admits a canonical family of generalized valuations, which are universal under contact embeddings. Those valuations assign numerical invariants to even-dimensional submanifolds, which in a certain sense measure the curvature at points of tangency to the contact structure. Moreover, these valuations generalize to the class of manifolds equipped with the structure of a Heisenberg algebra on their cotangent bundle. Pursuing the analogy with Euclidean integral geometry, we construct symplectic-invariant distributions on Grassmannians to produce Crofton formulas on the contact sphere. Using closely related distributions, we obtain Crofton formulas also in the linear symplectic space.
Faifman, Dmitry 1
@article{GT_2019_23_6_a6, author = {Faifman, Dmitry}, title = {Contact integral geometry and the {Heisenberg} algebra}, journal = {Geometry & topology}, pages = {3041--3110}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2019}, doi = {10.2140/gt.2019.23.3041}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/} }
Faifman, Dmitry. Contact integral geometry and the Heisenberg algebra. Geometry & topology, Tome 23 (2019) no. 6, pp. 3041-3110. doi : 10.2140/gt.2019.23.3041. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3041/
[1] A systolic inequality for geodesic flows on the two-sphere, Math. Ann. 367 (2017) 701 | DOI
, , , ,[2] Description of translation invariant valuations on convex sets with solution of P McMullen’s conjecture, Geom. Funct. Anal. 11 (2001) 244 | DOI
,[3] The multiplicative structure on continuous polynomial valuations, Geom. Funct. Anal. 14 (2004) 1 | DOI
,[4] Theory of valuations on manifolds, I : Linear spaces, Israel J. Math. 156 (2006) 311 | DOI
,[5] Theory of valuations on manifolds, II, Adv. Math. 207 (2006) 420 | DOI
,[6] Theory of valuations on manifolds, IV : New properties of the multiplicative structure, from: "Geometric aspects of functional analysis" (editors V D Milman, G Schechtman), Lecture Notes in Math. 1910, Springer (2007) 1 | DOI
,[7] Valuations on manifolds and integral geometry, Geom. Funct. Anal. 20 (2010) 1073 | DOI
,[8] The product on smooth and generalized valuations, Amer. J. Math. 134 (2012) 507 | DOI
, ,[9] Convex valuations invariant under the Lorentz group, J. Differential Geom. 98 (2014) 183
, ,[10] Theory of valuations on manifolds, III : Multiplicative structure in the general case, Trans. Amer. Math. Soc. 360 (2008) 1951 | DOI
, ,[11] Integral geometry and valuations, Springer (2014) | DOI
, ,[12] Dual spheres have the same girth, Amer. J. Math. 128 (2006) 361
,[13] Contact geometry and isosystolic inequalities, Geom. Funct. Anal. 24 (2014) 648 | DOI
, ,[14] Isosystolic inequalities for optical hypersurfaces, Adv. Math. 301 (2016) 934 | DOI
, , ,[15] From symplectic measurements to the Mahler conjecture, Duke Math. J. 163 (2014) 2003 | DOI
, , ,[16] The M–ellipsoid, symplectic capacities and volume, Comment. Math. Helv. 83 (2008) 359 | DOI
, , ,[17] A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line, Comment. Math. Helv. 84 (2009) 1 | DOI
,[18] Valuations on manifolds and Rumin cohomology, J. Differential Geom. 75 (2007) 433
, ,[19] Valuation theory of indefinite orthogonal groups, J. Funct. Anal. 273 (2017) 2167 | DOI
, ,[20] Hermitian integral geometry, Ann. of Math. 173 (2011) 907 | DOI
, ,[21] Integral geometry of complex space forms, Geom. Funct. Anal. 24 (2014) 403 | DOI
, , ,[22] Classification of invariant valuations on the quaternionic plane, J. Funct. Anal. 267 (2014) 2933 | DOI
, ,[23] Kinematic formulas on the quaternionic plane, Proc. Lond. Math. Soc. 115 (2017) 725 | DOI
, ,[24] Spin-invariant valuations on the octonionic plane, Israel J. Math. 214 (2016) 831 | DOI
, ,[25] Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and Pfaffians, Adv. in Appl. Math. 50 (2013) 474 | DOI
, , ,[26] On Riemannian metrics adapted to three-dimensional contact manifolds, from: "Workshop Bonn 1984" (editors F Hirzebruch, J Schwermer, S Suter), Lecture Notes in Math. 1111, Springer (1985) 279 | DOI
, ,[27] Heat equation and the volume of tubes, Invent. Math. 29 (1975) 239 | DOI
,[28] An extension of Schäffer’s dual girth conjecture to Grassmannians, J. Differential Geom. 92 (2012) 201
,[29] Crofton formulas and indefinite signature, Geom. Funct. Anal. 27 (2017) 489 | DOI
,[30] Riemannian curvature measures, Geom. Funct. Anal. 29 (2019) 343 | DOI
, ,[31] Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials, Adv. Math. 109 (1994) 188 | DOI
, ,[32] Asymptotic equivalence of symplectic capacities, Comment. Math. Helv. 91 (2016) 131 | DOI
, ,[33] Invariant functionals on Speh representations, Transform. Groups 20 (2015) 1023 | DOI
, , ,[34] Geometric asymptotics, 14, Amer. Math. Soc. (1977)
, ,[35] Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer (1957) | DOI
,[36] The analysis of linear partial differential operators, I : Distribution theory and Fourier analysis, 256, Springer (1990) | DOI
,[37] Even valuations on convex bodies, Trans. Amer. Math. Soc. 352 (2000) 71 | DOI
,[38] Projections of convex bodies and the Fourier transform, Israel J. Math. 139 (2004) 361 | DOI
, , ,[39] On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. 7 (1996) 67 | DOI
, ,[40] A characterization of affine surface area, Adv. Math. 147 (1999) 138 | DOI
, ,[41] A classification of SL(n) invariant valuations, Ann. of Math. 172 (2010) 1219 | DOI
, ,[42] Valuations and Euler-type relations on certain classes of convex polytopes, Proc. London Math. Soc. 35 (1977) 113 | DOI
,[43] Singular invariant hyperfunctions on the square matrix space and the alternating matrix space, Nagoya Math. J. 169 (2003) 19 | DOI
,[44] When symplectic topology meets Banach space geometry, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 959
,[45] Vector fields in the presence of a contact structure, Enseign. Math. 52 (2006) 215
,[46] The tangent groupoid of a Heisenberg manifold, Pacific J. Math. 227 (2006) 151 | DOI
,[47] Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, 906, Amer. Math. Soc. (2008) | DOI
,[48] The second fundamental form of a plane field, J. Differential Geom. 12 (1977) 619
,[49] Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994) 281
,[50] Convex bodies : the Brunn–Minkowski theory, 151, Cambridge Univ. Press (2014) | DOI
,[51] Integral geometry of exceptional spheres, preprint (2017)
, ,[52] Generalization of Kähler angle and integral geometry in complex projective spaces, from: "Steps in differential geometry" (editors L Kozma, P T Nagy, L Tamássy), Inst. Math. Inform. (2001) 349
,[53] Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000) 411 | DOI
,[54] On the volume of tubes, Amer. J. Math. 61 (1939) 461 | DOI
,Cité par Sources :