Homotopy groups of the observer moduli space of Ricci positive metrics
Geometry & topology, Tome 23 (2019) no. 6, pp. 3003-3040.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The observer moduli space of Riemannian metrics is the quotient of the space (M) of all Riemannian metrics on a manifold M by the group of diffeomorphisms Diffx0(M) which fix both a basepoint x0 and the tangent space at x0. The group Diffx0(M) acts freely on (M) provided that M is connected. This offers certain advantages over the classic moduli space, which is the quotient by the full diffeomorphism group. Results due to Botvinnik, Hanke, Schick and Walsh, and Hanke, Schick and Steimle have demonstrated that the higher homotopy groups of the observer moduli space x0s>0(M) of positive scalar curvature metrics are, in many cases, nontrivial. The aim in the current paper is to establish similar results for the moduli space x0Ric>0(M) of metrics with positive Ricci curvature. In particular we show that for a given k, there are infinite-order elements in the homotopy group π4kx0Ric>0(Sn) provided the dimension n is odd and sufficiently large. In establishing this we make use of a gluing result of Perelman. We provide full details of the proof of this gluing theorem, which we believe have not appeared before in the literature. We also extend this to a family gluing theorem for Ricci positive manifolds.

DOI : 10.2140/gt.2019.23.3003
Classification : 53C21, 53C27, 57R65, 58J05, 58J50, 55Q52
Keywords: positive Ricci curvature, moduli space, Riemannian metrics, Perelman gluing construction, Hatcher bundles

Botvinnik, Boris 1 ; Walsh, Mark G 2 ; Wraith, David J 2

1 Department of Mathematics, University of Oregon, Eugene, OR, United States
2 Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland
@article{GT_2019_23_6_a5,
     author = {Botvinnik, Boris and Walsh, Mark G and Wraith, David J},
     title = {Homotopy groups of the observer moduli space of {Ricci} positive metrics},
     journal = {Geometry & topology},
     pages = {3003--3040},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.3003},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/}
}
TY  - JOUR
AU  - Botvinnik, Boris
AU  - Walsh, Mark G
AU  - Wraith, David J
TI  - Homotopy groups of the observer moduli space of Ricci positive metrics
JO  - Geometry & topology
PY  - 2019
SP  - 3003
EP  - 3040
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/
DO  - 10.2140/gt.2019.23.3003
ID  - GT_2019_23_6_a5
ER  - 
%0 Journal Article
%A Botvinnik, Boris
%A Walsh, Mark G
%A Wraith, David J
%T Homotopy groups of the observer moduli space of Ricci positive metrics
%J Geometry & topology
%D 2019
%P 3003-3040
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/
%R 10.2140/gt.2019.23.3003
%F GT_2019_23_6_a5
Botvinnik, Boris; Walsh, Mark G; Wraith, David J. Homotopy groups of the observer moduli space of Ricci positive metrics. Geometry & topology, Tome 23 (2019) no. 6, pp. 3003-3040. doi : 10.2140/gt.2019.23.3003. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/

[1] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[2] B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI

[3] B Botvinnik, B Hanke, T Schick, M Walsh, Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom. Topol. 14 (2010) 2047 | DOI

[4] R Carr, Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988) 63 | DOI

[5] D Crowley, T Schick, W Steimle, Harmonic spinors and metrics of positive curvature via the Gromoll filtration and Toda brackets, J. Topol. 11 (2018) 1077 | DOI

[6] A Dessai, S Klaus, W Tuschmann, Nonconnected moduli spaces of nonnegative sectional curvature metrics on simply connected manifolds, Bull. Lond. Math. Soc. 50 (2018) 96 | DOI

[7] D G Ebin, The manifold of Riemannian metrics, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. 15, Amer. Math. Soc. (1970) 11

[8] F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325

[9] S Goette, Morse theory and higher torsion invariants, I, preprint (2001)

[10] S Goette, K Igusa, Exotic smooth structures on topological fiber bundles, II, Trans. Amer. Math. Soc. 366 (2014) 791 | DOI

[11] S Goette, K Igusa, B Williams, Exotic smooth structures on topological fiber bundles, I, Trans. Amer. Math. Soc. 366 (2014) 749 | DOI

[12] M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI

[13] B Hanke, T Schick, W Steimle, The space of metrics of positive scalar curvature, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 335 | DOI

[14] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[15] K Igusa, Higher Franz–Reidemeister torsion, 31, Amer. Math. Soc. (2002)

[16] M Kreck, S Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825 | DOI

[17] J M Lee, Introduction to smooth manifolds, 218, Springer (2013) | DOI

[18] X Menguy, Noncollapsing examples with positive Ricci curvature and infinite topological type, Geom. Funct. Anal. 10 (2000) 600 | DOI

[19] G Perelman, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, from: "Comparison geometry" (editors K Grove, P Petersen), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 157

[20] P Petersen, Riemannian geometry, 171, Springer (1998) | DOI

[21] W Tuschmann, D J Wraith, Moduli spaces of Riemannian metrics, 46, Birkhäuser (2015) | DOI

[22] M Walsh, Metrics of positive scalar curvature and generalised Morse functions, II, Trans. Amer. Math. Soc. 366 (2014) 1 | DOI

[23] D J Wraith, On the moduli space of positive Ricci curvature metrics on homotopy spheres, Geom. Topol. 15 (2011) 1983 | DOI

Cité par Sources :