Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The observer moduli space of Riemannian metrics is the quotient of the space of all Riemannian metrics on a manifold by the group of diffeomorphisms which fix both a basepoint and the tangent space at . The group acts freely on provided that is connected. This offers certain advantages over the classic moduli space, which is the quotient by the full diffeomorphism group. Results due to Botvinnik, Hanke, Schick and Walsh, and Hanke, Schick and Steimle have demonstrated that the higher homotopy groups of the observer moduli space of positive scalar curvature metrics are, in many cases, nontrivial. The aim in the current paper is to establish similar results for the moduli space of metrics with positive Ricci curvature. In particular we show that for a given , there are infinite-order elements in the homotopy group provided the dimension is odd and sufficiently large. In establishing this we make use of a gluing result of Perelman. We provide full details of the proof of this gluing theorem, which we believe have not appeared before in the literature. We also extend this to a family gluing theorem for Ricci positive manifolds.
Botvinnik, Boris 1 ; Walsh, Mark G 2 ; Wraith, David J 2
@article{GT_2019_23_6_a5, author = {Botvinnik, Boris and Walsh, Mark G and Wraith, David J}, title = {Homotopy groups of the observer moduli space of {Ricci} positive metrics}, journal = {Geometry & topology}, pages = {3003--3040}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2019}, doi = {10.2140/gt.2019.23.3003}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/} }
TY - JOUR AU - Botvinnik, Boris AU - Walsh, Mark G AU - Wraith, David J TI - Homotopy groups of the observer moduli space of Ricci positive metrics JO - Geometry & topology PY - 2019 SP - 3003 EP - 3040 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/ DO - 10.2140/gt.2019.23.3003 ID - GT_2019_23_6_a5 ER -
%0 Journal Article %A Botvinnik, Boris %A Walsh, Mark G %A Wraith, David J %T Homotopy groups of the observer moduli space of Ricci positive metrics %J Geometry & topology %D 2019 %P 3003-3040 %V 23 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/ %R 10.2140/gt.2019.23.3003 %F GT_2019_23_6_a5
Botvinnik, Boris; Walsh, Mark G; Wraith, David J. Homotopy groups of the observer moduli space of Ricci positive metrics. Geometry & topology, Tome 23 (2019) no. 6, pp. 3003-3040. doi : 10.2140/gt.2019.23.3003. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.3003/
[1] Einstein manifolds, 10, Springer (1987) | DOI
,[2] The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI
, ,[3] Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom. Topol. 14 (2010) 2047 | DOI
, , , ,[4] Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988) 63 | DOI
,[5] Harmonic spinors and metrics of positive curvature via the Gromoll filtration and Toda brackets, J. Topol. 11 (2018) 1077 | DOI
, , ,[6] Nonconnected moduli spaces of nonnegative sectional curvature metrics on simply connected manifolds, Bull. Lond. Math. Soc. 50 (2018) 96 | DOI
, , ,[7] The manifold of Riemannian metrics, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. 15, Amer. Math. Soc. (1970) 11
,[8] On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325
, ,[9] Morse theory and higher torsion invariants, I, preprint (2001)
,[10] Exotic smooth structures on topological fiber bundles, II, Trans. Amer. Math. Soc. 366 (2014) 791 | DOI
, ,[11] Exotic smooth structures on topological fiber bundles, I, Trans. Amer. Math. Soc. 366 (2014) 749 | DOI
, , ,[12] The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI
, ,[13] The space of metrics of positive scalar curvature, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 335 | DOI
, , ,[14] Differential topology, 33, Springer (1976) | DOI
,[15] Higher Franz–Reidemeister torsion, 31, Amer. Math. Soc. (2002)
,[16] Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825 | DOI
, ,[17] Introduction to smooth manifolds, 218, Springer (2013) | DOI
,[18] Noncollapsing examples with positive Ricci curvature and infinite topological type, Geom. Funct. Anal. 10 (2000) 600 | DOI
,[19] Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, from: "Comparison geometry" (editors K Grove, P Petersen), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 157
,[20] Riemannian geometry, 171, Springer (1998) | DOI
,[21] Moduli spaces of Riemannian metrics, 46, Birkhäuser (2015) | DOI
, ,[22] Metrics of positive scalar curvature and generalised Morse functions, II, Trans. Amer. Math. Soc. 366 (2014) 1 | DOI
,[23] On the moduli space of positive Ricci curvature metrics on homotopy spheres, Geom. Topol. 15 (2011) 1983 | DOI
,Cité par Sources :