Operads of genus zero curves and the Grothendieck–Teichmüller group
Geometry & topology, Tome 23 (2019) no. 1, pp. 299-346.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the group of homotopy automorphisms of the profinite completion of the genus zero surface operad is isomorphic to the (profinite) Grothendieck–Teichmüller group. Using a result of Drummond-Cole, we deduce that the Grothendieck–Teichmüller group acts nontrivially on ̄0,+1, the operad of stable curves of genus zero. As a second application, we give an alternative proof that the framed little 2–disks operad is formal.

DOI : 10.2140/gt.2019.23.299
Classification : 18D50, 14G32, 32G15, 55P48, 55U35
Keywords: infinity operads, Grothendieck–Teichmüller group, absolute Galois group, moduli space of curves

Boavida de Brito, Pedro 1 ; Horel, Geoffroy 2 ; Robertson, Marcy 3

1 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2 LAGA, Institut Galilée, Université Paris 13, Villetaneuse, France
3 School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
@article{GT_2019_23_1_a6,
     author = {Boavida de Brito, Pedro and Horel, Geoffroy and Robertson, Marcy},
     title = {Operads of genus zero curves and the {Grothendieck{\textendash}Teichm\"uller} group},
     journal = {Geometry & topology},
     pages = {299--346},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.299},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/}
}
TY  - JOUR
AU  - Boavida de Brito, Pedro
AU  - Horel, Geoffroy
AU  - Robertson, Marcy
TI  - Operads of genus zero curves and the Grothendieck–Teichmüller group
JO  - Geometry & topology
PY  - 2019
SP  - 299
EP  - 346
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/
DO  - 10.2140/gt.2019.23.299
ID  - GT_2019_23_1_a6
ER  - 
%0 Journal Article
%A Boavida de Brito, Pedro
%A Horel, Geoffroy
%A Robertson, Marcy
%T Operads of genus zero curves and the Grothendieck–Teichmüller group
%J Geometry & topology
%D 2019
%P 299-346
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/
%R 10.2140/gt.2019.23.299
%F GT_2019_23_1_a6
Boavida de Brito, Pedro; Horel, Geoffroy; Robertson, Marcy. Operads of genus zero curves and the Grothendieck–Teichmüller group. Geometry & topology, Tome 23 (2019) no. 1, pp. 299-346. doi : 10.2140/gt.2019.23.299. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/

[1] D W Anderson, Fibrations and geometric realizations, Bull. Amer. Math. Soc. 84 (1978) 765 | DOI

[2] I Barnea, Y Harpaz, G Horel, Pro-categories in homotopy theory, Algebr. Geom. Topol. 17 (2017) 567 | DOI

[3] G V Belyĭ, On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 267

[4] C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805 | DOI

[5] C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 31 | DOI

[6] J E Bergner, P Hackney, Group actions on Segal operads, Israel J. Math. 202 (2014) 423 | DOI

[7] D C Cisinski, I Moerdijk, Dendroidal Segal spaces and ∞–operads, J. Topol. 6 (2013) 675 | DOI

[8] V G Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q∕Q), Algebra i Analiz 2 (1990) 149

[9] G C Drummond-Cole, Homotopically trivializing the circle in the framed little disks, J. Topol. 7 (2014) 641 | DOI

[10] W G Dwyer, D M Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 | DOI

[11] W G Dwyer, D M Kan, Function complexes in homotopical algebra, Topology 19 (1980) 427 | DOI

[12] B Fresse, Homotopy of operads and Grothendieck–Teichmüller groups, I : The algebraic theory and its topological background, 217, Amer. Math. Soc. (2017)

[13] E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265 | DOI

[14] E Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 199 | DOI

[15] J Giansiracusa, P Salvatore, Formality of the framed little 2–discs operad and semidirect products, from: "Homotopy theory of function spaces and related topics" (editors Y Félix, G Lupton, S B Smith), Contemp. Math. 519, Amer. Math. Soc. (2010) 115 | DOI

[16] A Grothendieck, Esquisse d’un programme, from: "Geometric Galois actions, I" (editors L Schneps, P Lochak), London Math. Soc. Lecture Note Ser. 242, Cambridge Univ. Press (1997) 5

[17] F Guillén Santos, V Navarro, P Pascual, A Roig, Moduli spaces and formal operads, Duke Math. J. 129 (2005) 291 | DOI

[18] A Hatcher, P Lochak, L Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000) 1 | DOI

[19] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[20] G Horel, Profinite completion of operads and the Grothendieck–Teichmüller group, Adv. Math. 321 (2017) 326 | DOI

[21] D C Isaksen, A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353 (2001) 2805 | DOI

[22] P T Johnstone, Stone spaces, 3, Cambridge Univ. Press (1982)

[23] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[24] I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI

[25] D Petersen, Minimal models, GT–action and formality of the little disk operad, Selecta Math. 20 (2014) 817 | DOI

[26] G Quick, Profinite homotopy theory, Doc. Math. 13 (2008) 585

[27] G Quick, Some remarks on profinite completion of spaces, from: "Galois–Teichmüller theory and arithmetic geometry" (editors H Nakamura, F Pop, L Schneps, A Tamagawa), Adv. Stud. Pure Math. 63, Math. Soc. Japan (2012) 413

[28] D Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974) 1 | DOI

[29] U Tillmann, Higher genus surface operad detects infinite loop spaces, Math. Ann. 317 (2000) 613 | DOI

[30] P Ševera, Formality of the chain operad of framed little disks, Lett. Math. Phys. 93 (2010) 29 | DOI

[31] N Wahl, Ribbon braids and related operads, PhD thesis, Oxford University (2001)

[32] N Wahl, Infinite loop space structure(s) on the stable mapping class group, Topology 43 (2004) 343 | DOI

Cité par Sources :