Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the group of homotopy automorphisms of the profinite completion of the genus zero surface operad is isomorphic to the (profinite) Grothendieck–Teichmüller group. Using a result of Drummond-Cole, we deduce that the Grothendieck–Teichmüller group acts nontrivially on , the operad of stable curves of genus zero. As a second application, we give an alternative proof that the framed little –disks operad is formal.
Boavida de Brito, Pedro 1 ; Horel, Geoffroy 2 ; Robertson, Marcy 3
@article{GT_2019_23_1_a6, author = {Boavida de Brito, Pedro and Horel, Geoffroy and Robertson, Marcy}, title = {Operads of genus zero curves and the {Grothendieck{\textendash}Teichm\"uller} group}, journal = {Geometry & topology}, pages = {299--346}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, doi = {10.2140/gt.2019.23.299}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/} }
TY - JOUR AU - Boavida de Brito, Pedro AU - Horel, Geoffroy AU - Robertson, Marcy TI - Operads of genus zero curves and the Grothendieck–Teichmüller group JO - Geometry & topology PY - 2019 SP - 299 EP - 346 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/ DO - 10.2140/gt.2019.23.299 ID - GT_2019_23_1_a6 ER -
%0 Journal Article %A Boavida de Brito, Pedro %A Horel, Geoffroy %A Robertson, Marcy %T Operads of genus zero curves and the Grothendieck–Teichmüller group %J Geometry & topology %D 2019 %P 299-346 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/ %R 10.2140/gt.2019.23.299 %F GT_2019_23_1_a6
Boavida de Brito, Pedro; Horel, Geoffroy; Robertson, Marcy. Operads of genus zero curves and the Grothendieck–Teichmüller group. Geometry & topology, Tome 23 (2019) no. 1, pp. 299-346. doi : 10.2140/gt.2019.23.299. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.299/
[1] Fibrations and geometric realizations, Bull. Amer. Math. Soc. 84 (1978) 765 | DOI
,[2] Pro-categories in homotopy theory, Algebr. Geom. Topol. 17 (2017) 567 | DOI
, , ,[3] On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 267
,[4] Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805 | DOI
, ,[5] Resolution of coloured operads and rectification of homotopy algebras, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 31 | DOI
, ,[6] Group actions on Segal operads, Israel J. Math. 202 (2014) 423 | DOI
, ,[7] Dendroidal Segal spaces and ∞–operads, J. Topol. 6 (2013) 675 | DOI
, ,[8] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q∕Q), Algebra i Analiz 2 (1990) 149
,[9] Homotopically trivializing the circle in the framed little disks, J. Topol. 7 (2014) 641 | DOI
,[10] Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 | DOI
, ,[11] Function complexes in homotopical algebra, Topology 19 (1980) 427 | DOI
, ,[12] Homotopy of operads and Grothendieck–Teichmüller groups, I : The algebraic theory and its topological background, 217, Amer. Math. Soc. (2017)
,[13] Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265 | DOI
,[14] Operads and moduli spaces of genus 0 Riemann surfaces, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 199 | DOI
,[15] Formality of the framed little 2–discs operad and semidirect products, from: "Homotopy theory of function spaces and related topics" (editors Y Félix, G Lupton, S B Smith), Contemp. Math. 519, Amer. Math. Soc. (2010) 115 | DOI
, ,[16] Esquisse d’un programme, from: "Geometric Galois actions, I" (editors L Schneps, P Lochak), London Math. Soc. Lecture Note Ser. 242, Cambridge Univ. Press (1997) 5
,[17] Moduli spaces and formal operads, Duke Math. J. 129 (2005) 291 | DOI
, , , ,[18] On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000) 1 | DOI
, , ,[19] Model categories and their localizations, 99, Amer. Math. Soc. (2003)
,[20] Profinite completion of operads and the Grothendieck–Teichmüller group, Adv. Math. 321 (2017) 326 | DOI
,[21] A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353 (2001) 2805 | DOI
,[22] Stone spaces, 3, Cambridge Univ. Press (1982)
,[23] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[24] Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 | DOI
, ,[25] Minimal models, GT–action and formality of the little disk operad, Selecta Math. 20 (2014) 817 | DOI
,[26] Profinite homotopy theory, Doc. Math. 13 (2008) 585
,[27] Some remarks on profinite completion of spaces, from: "Galois–Teichmüller theory and arithmetic geometry" (editors H Nakamura, F Pop, L Schneps, A Tamagawa), Adv. Stud. Pure Math. 63, Math. Soc. Japan (2012) 413
,[28] Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974) 1 | DOI
,[29] Higher genus surface operad detects infinite loop spaces, Math. Ann. 317 (2000) 613 | DOI
,[30] Formality of the chain operad of framed little disks, Lett. Math. Phys. 93 (2010) 29 | DOI
,[31] Ribbon braids and related operads, PhD thesis, Oxford University (2001)
,[32] Infinite loop space structure(s) on the stable mapping class group, Topology 43 (2004) 343 | DOI
,Cité par Sources :