Quasi-asymptotically conical Calabi–Yau manifolds
Geometry & topology, Tome 23 (2019) no. 1, pp. 29-100.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct new examples of quasi-asymptotically conical ( QAC) Calabi–Yau manifolds that are not quasi-asymptotically locally Euclidean ( QALE). We do so by first providing a natural compactification of QAC–spaces by manifolds with fibered corners and by giving a definition of QAC–metrics in terms of an associated Lie algebra of smooth vector fields on this compactification. Thanks to this compactification and the Fredholm theory for elliptic operators on QAC–spaces developed by the second author and Mazzeo, we can in many instances obtain Kähler QAC–metrics having Ricci potential decaying sufficiently fast at infinity. This allows us to obtain QAC Calabi–Yau metrics in the Kähler classes of these metrics by solving a corresponding complex Monge–Ampère equation.

DOI : 10.2140/gt.2019.23.29
Classification : 53C55, 58J05
Keywords: Calabi–Yau metrics, quasi-asymptotically conical metrics, manifolds with corners

Conlon, Ronan 1 ; Degeratu, Anda 2 ; Rochon, Frédéric 3

1 Department of Mathematics and Statistics, Florida International University, Miami, FL, United States
2 Fachbereich Mathematik, Universität Stuttgart, Stuttgart, Germany
3 Département de Mathématiques, Université du Québec à Montréal, Montréal, QC, Canada
@article{GT_2019_23_1_a1,
     author = {Conlon, Ronan and Degeratu, Anda and Rochon, Fr\'ed\'eric},
     title = {Quasi-asymptotically conical {Calabi{\textendash}Yau} manifolds},
     journal = {Geometry & topology},
     pages = {29--100},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.29},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.29/}
}
TY  - JOUR
AU  - Conlon, Ronan
AU  - Degeratu, Anda
AU  - Rochon, Frédéric
TI  - Quasi-asymptotically conical Calabi–Yau manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 29
EP  - 100
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.29/
DO  - 10.2140/gt.2019.23.29
ID  - GT_2019_23_1_a1
ER  - 
%0 Journal Article
%A Conlon, Ronan
%A Degeratu, Anda
%A Rochon, Frédéric
%T Quasi-asymptotically conical Calabi–Yau manifolds
%J Geometry & topology
%D 2019
%P 29-100
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.29/
%R 10.2140/gt.2019.23.29
%F GT_2019_23_1_a1
Conlon, Ronan; Degeratu, Anda; Rochon, Frédéric. Quasi-asymptotically conical Calabi–Yau manifolds. Geometry & topology, Tome 23 (2019) no. 1, pp. 29-100. doi : 10.2140/gt.2019.23.29. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.29/

[1] P Albin, É Leichtnam, R Mazzeo, P Piazza, The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. 45 (2012) 241 | DOI

[2] P Albin, R Melrose, Resolution of smooth group actions, from: "Spectral theory and geometric analysis" (editors M Braverman, L Friedlander, T Kappeler, P Kuchment, P Topalov, J Weitsman), Contemp. Math. 535, Amer. Math. Soc. (2011) 1 | DOI

[3] B Ammann, R Lauter, V Nistor, On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math. Math. Sci. (2004) 161 | DOI

[4] T Aubin, Nonlinear analysis on manifolds, Monge–Ampère equations, 252, Springer (1982) | DOI

[5] S Bando, A Kasue, H Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989) 313 | DOI

[6] S Bando, R Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds, from: "Geometry and analysis on manifolds" (editor T Sunada), Lecture Notes in Math. 1339, Springer (1988) 20 | DOI

[7] S Bando, R Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds, II, Math. Ann. 287 (1990) 175 | DOI

[8] E Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12 (1979) 269 | DOI

[9] G Carron, On the quasi-asymptotically locally Euclidean geometry of Nakajima’s metric, J. Inst. Math. Jussieu 10 (2011) 119 | DOI

[10] A Chau, L F Tam, A C0–estimate for the parabolic Monge–Ampère equation on complete non-compact Kähler manifolds, Compos. Math. 146 (2010) 259 | DOI

[11] C Van Coevering, Ricci-flat Kähler metrics on crepant resolutions of Kähler cones, Math. Ann. 347 (2010) 581 | DOI

[12] C Van Coevering, Examples of asymptotically conical Ricci-flat Kähler manifolds, Math. Z. 267 (2011) 465 | DOI

[13] R J Conlon, H J Hein, Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J. 162 (2013) 2855 | DOI

[14] R J Conlon, H J Hein, Asymptotically conical Calabi–Yau metrics on quasi-projective varieties, Geom. Funct. Anal. 25 (2015) 517 | DOI

[15] R J Conlon, R Mazzeo, F Rochon, The moduli space of asymptotically cylindrical Calabi–Yau manifolds, Comm. Math. Phys. 338 (2015) 953 | DOI

[16] C Debord, J M Lescure, F Rochon, Pseudodifferential operators on manifolds with fibred corners, Ann. Inst. Fourier (Grenoble) 65 (2015) 1799 | DOI

[17] A Degeratu, R Mazzeo, Fredholm theory for elliptic operators on quasi-asymptotically conical spaces, Proc. Lond. Math. Soc. 116 (2018) 1112 | DOI

[18] C L Epstein, R B Melrose, G A Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991) 1 | DOI

[19] J Gell-Redman, F Rochon, Hodge cohomology of some foliated boundary and foliated cusp metrics, Math. Nachr. 288 (2015) 206 | DOI

[20] M Goresky, R Macpherson, Intersection homology theory, Topology 19 (1980) 135 | DOI

[21] R Goto, Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan 64 (2012) 1005 | DOI

[22] A Grigor’Yan, Estimates of heat kernels on Riemannian manifolds, from: "Spectral theory and geometry" (editors B Davies, Y Safarov), London Math. Soc. Lecture Note Ser. 273, Cambridge Univ. Press (1999) 140 | DOI

[23] A Grigor’Yan, L Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005) 825 | DOI

[24] D D Joyce, Compact manifolds with special holonomy, Oxford Univ. Press (2000)

[25] D Joyce, Asymptotically locally Euclidean metrics with holonomy SU(m), Ann. Global Anal. Geom. 19 (2001) 55 | DOI

[26] D Joyce, Quasi-ALE metrics with holonomy SU(m) and Sp(m), Ann. Global Anal. Geom. 19 (2001) 103 | DOI

[27] C Kottke, M Singer, Partial compactification of monopoles and metric asymptotics, preprint (2015)

[28] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665 | DOI

[29] C Lebrun, Fano manifolds, contact structures, and quaternionic geometry, Internat. J. Math. 6 (1995) 419 | DOI

[30] R Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations 16 (1991) 1615 | DOI

[31] R R Mazzeo, R B Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987) 260 | DOI

[32] R Mazzeo, R B Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1998) 833 | DOI

[33] R B Melrose, Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not. (1992) 51 | DOI

[34] R B Melrose, The Atiyah–Patodi–Singer index theorem, 4, A K Peters (1993)

[35] R B Melrose, Geometric scattering theory, Cambridge Univ. Press (1995)

[36] R B Melrose, Differential analysis on manifolds with corners, book project (1996)

[37] R B Melrose, Planar Hilbert scheme and L2 cohomology, conference talk (2016)

[38] H Nakajima, Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI

[39] Y Odaka, C Spotti, S Sun, Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics, J. Differential Geom. 102 (2016) 127 | DOI

[40] M J Pflaum, Analytic and geometric study of stratified spaces, 1768, Springer (2001) | DOI

[41] G Tian, S T Yau, Complete Kähler manifolds with zero Ricci curvature, I, J. Amer. Math. Soc. 3 (1990) 579 | DOI

[42] G Tian, S T Yau, Complete Kähler manifolds with zero Ricci curvature, II, Invent. Math. 106 (1991) 27 | DOI

[43] S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI

Cité par Sources :