Local topological rigidity of nongeometric 3–manifolds
Geometry & topology, Tome 23 (2019) no. 6, pp. 2899-2927.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Riemannian metrics on compact, orientable, nongeometric 3–manifolds (ie those whose interior does not support any of the eight model geometries) with torsionless fundamental group and (possibly empty) nonspherical boundary. We prove a lower bound “à la Margulis” for the systole and a volume estimate for these manifolds, only in terms of upper bounds on the entropy and diameter. We then deduce corresponding local topological rigidity results for manifolds in this class whose entropy and diameter are bounded respectively by E and D. For instance, this class locally contains only finitely many topological types; and closed, irreducible manifolds in this class which are close enough (with respect to E and D) are diffeomorphic. Several examples and counterexamples are produced to stress the differences with the geometric case.

DOI : 10.2140/gt.2019.23.2899
Classification : 20E08, 53C23, 53C24, 57M60, 20E08
Keywords: entropy, systole, acylindrical splittings, $3$–manifolds

Cerocchi, Filippo 1 ; Sambusetti, Andrea 2

1 Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Rome, Italy
2 Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma, Roma, Italy
@article{GT_2019_23_6_a3,
     author = {Cerocchi, Filippo and Sambusetti, Andrea},
     title = {Local topological rigidity of nongeometric 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {2899--2927},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.2899},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2899/}
}
TY  - JOUR
AU  - Cerocchi, Filippo
AU  - Sambusetti, Andrea
TI  - Local topological rigidity of nongeometric 3–manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 2899
EP  - 2927
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2899/
DO  - 10.2140/gt.2019.23.2899
ID  - GT_2019_23_6_a3
ER  - 
%0 Journal Article
%A Cerocchi, Filippo
%A Sambusetti, Andrea
%T Local topological rigidity of nongeometric 3–manifolds
%J Geometry & topology
%D 2019
%P 2899-2927
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2899/
%R 10.2140/gt.2019.23.2899
%F GT_2019_23_6_a3
Cerocchi, Filippo; Sambusetti, Andrea. Local topological rigidity of nongeometric 3–manifolds. Geometry & topology, Tome 23 (2019) no. 6, pp. 2899-2927. doi : 10.2140/gt.2019.23.2899. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2899/

[1] M T Anderson, L Rodríguez, Minimal surfaces and 3–manifolds of nonnegative Ricci curvature, Math. Ann. 284 (1989) 461 | DOI

[2] M Aschenbrenner, S Friedl, H Wilton, 3–manifold groups, 20, Eur. Math. Soc. (2015) | DOI

[3] J A Behrstock, W D Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217 | DOI

[4] J A Behrstock, W D Neumann, Quasi-isometric classification of non-geometric 3–manifold groups, J. Reine Angew. Math. 669 (2012) 101 | DOI

[5] L Bessières, G Besson, S Maillot, M Boileau, J Porti, Geometrisation of 3–manifolds, 13, Eur. Math. Soc. (2010) | DOI

[6] G Besson, G Courtois, S Gallot, Un lemme de Margulis sans courbure et ses applications, preprint (2003)

[7] F Bonahon, Geometric structures on 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 93 | DOI

[8] M Bucher, A Talambutsa, Exponential growth rates of free and amalgamated products, Israel J. Math. 212 (2016) 521 | DOI

[9] P Buser, H Karcher, Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148

[10] J Cao, X Chen, Minimal volume and simplicial norm of visibility n–manifolds and compact 3–manifolds, preprint (2008)

[11] F Cerocchi, Margulis lemma, entropy and free products, Ann. Inst. Fourier (Grenoble) 64 (2014) 1011 | DOI

[12] F Cerocchi, On the peripheral subgroups of irreducible 3–manifold groups and acylindrical splittings, preprint (2017)

[13] F Cerocchi, A Sambusetti, Convergence of non-positively curved manifolds with acylindrical splittings, in preparation

[14] F Cerocchi, A Sambusetti, Entropy and finiteness of groups with acylindrical splittings, preprint (2018)

[15] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 | DOI

[16] J Cheeger, M Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differential Geom. 23 (1986) 309 | DOI

[17] R Frigerio, J F Lafont, A Sisto, Rigidity of high dimensional graph manifolds, 372, Soc. Math. France (2015)

[18] K Fukaya, T Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992) 253 | DOI

[19] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5

[20] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1 | DOI

[21] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) | DOI

[22] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 | DOI

[23] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[24] J Heber, G Knieper, H M Shah, Asymptotically harmonic spaces in dimension 3, Proc. Amer. Math. Soc. 135 (2007) 845 | DOI

[25] J Hempel, 3–manifolds, 86, Princeton Univ. Press (1976)

[26] W H Jaco, P B Shalen, Seifert fibered spaces in 3–manifolds, 220, Amer. Math. Soc. (1979) | DOI

[27] K Johannson, Équivalences d’homotopie des variétés de dimension 3, C. R. Acad. Sci. Paris Sér. A-B 281 (1975) 1009

[28] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979)

[29] I Kapovich, R Weidmann, Two-generated groups acting on trees, Arch. Math. (Basel) 73 (1999) 172 | DOI

[30] M Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI

[31] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds, Geom. Funct. Anal. 5 (1995) 582 | DOI

[32] M Kapovich, B Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997) 393 | DOI

[33] V Kapovitch, B Wilking, Structure of fundamental groups of manifolds with Ricci curvature bounded below, preprint (2011)

[34] G Knieper, Spherical means on compact Riemannian manifolds of negative curvature, Differential Geom. Appl. 4 (1994) 361 | DOI

[35] B Leeb, 3–manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122 (1995) 277 | DOI

[36] A Manning, Topological entropy for geodesic flows, Ann. of Math. 110 (1979) 567 | DOI

[37] E E Moise, Affine structures in 3–manifolds, V : The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96 | DOI

[38] D Müllner, Orientation reversal of manifolds, Algebr. Geom. Topol. 9 (2009) 2361 | DOI

[39] J Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Bull. Amer. Math. Soc. 65 (1959) 332 | DOI

[40] J Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. 72 (1960) 521 | DOI

[41] W D Neumann, Graph 3–manifolds, splice diagrams, singularities, from: "Singularity theory" (editors D Chéniot, N Dutertre, C Murolo, D Trotman, A Pichon), World Sci. (2007) 787 | DOI

[42] K Ohshika, Teichmüller spaces of Seifert fibered manifolds with infinite π1, Topology Appl. 27 (1987) 75 | DOI

[43] J P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)

[44] J P Otal, Thurston’s hyperbolization of Haken manifolds, from: "Surveys in differential geometry" (editors C C Hsiung, S T Yau), Surv. Diff. Geom. 3, International (1998) 77 | DOI

[45] P Papasoglu, K Whyte, Quasi-isometries between groups with infinitely many ends, Comment. Math. Helv. 77 (2002) 133 | DOI

[46] G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002)

[47] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)

[48] G Perelman, Ricci flow with surgery on three-manifolds, preprint (2003)

[49] G Reviron, Rigidité topologique sous l’hypothèse “entropie majorée” et applications, Comment. Math. Helv. 83 (2008) 815 | DOI

[50] A Sambusetti, Minimal entropy and simplicial volume, Manuscripta Math. 99 (1999) 541 | DOI

[51] A Sambusetti, On minimal entropy and stability, Geom. Dedicata 81 (2000) 261 | DOI

[52] R Schoen, S T Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, from: "Seminar on Differential Geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 209

[53] V Schroeder, H Shah, On 3–dimensional asymptotically harmonic manifolds, Arch. Math. (Basel) 90 (2008) 275 | DOI

[54] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401 | DOI

[55] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527 | DOI

[56] W X Shi, Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Differential Geom. 29 (1989) 353 | DOI

[57] T Soma, The Gromov invariant of links, Invent. Math. 64 (1981) 445 | DOI

[58] C Sormani, G Wei, Hausdorff convergence and universal covers, Trans. Amer. Math. Soc. 353 (2001) 3585 | DOI

[59] G A Swarup, Two finiteness properties in 3–manifolds, Bull. London Math. Soc. 12 (1980) 296 | DOI

[60] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI

[61] W P Thurston, Hyperbolic structures on 3–manifolds, I : Deformation of acylindrical manifolds, Ann. of Math. 124 (1986) 203 | DOI

[62] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1986)

[63] W P Thurston, Hyperbolic structures on 3–manifolds, III : Deformations of 3–manifolds with incompressible boundary, preprint (1986)

[64] W P Thurston, Three-dimensional geometry and topology, I, 35, Princeton Univ. Press (1997)

[65] V G Turaev, Homeomorphisms of geometric three-dimensional manifolds, Mat. Zametki 43 (1988) 533

[66] W Tuschmann, Hausdorff convergence and the fundamental group, Math. Z. 218 (1995) 207 | DOI

[67] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56 | DOI

[68] J H C Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math. 73 (1961) 154 | DOI

[69] H Wilton, P Zalesskii, Profinite properties of graph manifolds, Geom. Dedicata 147 (2010) 29 | DOI

[70] S H Zhu, A finiteness theorem for Ricci curvature in dimension three, J. Differential Geom. 37 (1993) 711 | DOI

Cité par Sources :