Rationality, universal generation and the integral Hodge conjecture
Geometry & topology, Tome 23 (2019) no. 6, pp. 2861-2898.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the universal generation of algebraic cycles to relate (stable) rationality to the integral Hodge conjecture. We show that the Chow group of 1–cycles on a cubic hypersurface is universally generated by lines. Applications are mainly in cubic hypersurfaces of low dimensions. For example, we show that if a generic cubic fourfold is stably rational then the Beauville–Bogomolov form on its variety of lines, viewed as an integral Hodge class on the self product of its variety of lines, is algebraic. In dimensions 3 and 5, we relate stable rationality with the geometry of the associated intermediate Jacobian.

DOI : 10.2140/gt.2019.23.2861
Classification : 14C25, 14C30, 14E08
Keywords: algebraic cycles, Hodge conjecture, cubic threefold, cubic fourfold

Shen, Mingmin 1

1 KdV Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands
@article{GT_2019_23_6_a2,
     author = {Shen, Mingmin},
     title = {Rationality, universal generation and the integral {Hodge} conjecture},
     journal = {Geometry & topology},
     pages = {2861--2898},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.2861},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2861/}
}
TY  - JOUR
AU  - Shen, Mingmin
TI  - Rationality, universal generation and the integral Hodge conjecture
JO  - Geometry & topology
PY  - 2019
SP  - 2861
EP  - 2898
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2861/
DO  - 10.2140/gt.2019.23.2861
ID  - GT_2019_23_6_a2
ER  - 
%0 Journal Article
%A Shen, Mingmin
%T Rationality, universal generation and the integral Hodge conjecture
%J Geometry & topology
%D 2019
%P 2861-2898
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2861/
%R 10.2140/gt.2019.23.2861
%F GT_2019_23_6_a2
Shen, Mingmin. Rationality, universal generation and the integral Hodge conjecture. Geometry & topology, Tome 23 (2019) no. 6, pp. 2861-2898. doi : 10.2140/gt.2019.23.2861. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2861/

[1] N Addington, B Hassett, Y Tschinkel, A Várilly-Alvarado, Cubic fourfolds fibered in sextic del Pezzo surfaces, preprint (2016)

[2] A B Altman, S L Kleiman, Foundations of the theory of Fano schemes, Compositio Math. 34 (1977) 3

[3] M Artin, D Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972) 75 | DOI

[4] A Beauville, R Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 703

[5] C H Clemens, P A Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972) 281 | DOI

[6] J L Colliot-Thélène, A Pirutka, Hypersurfaces quartiques de dimension 3 : non-rationalité stable, Ann. Sci. Éc. Norm. Supér. 49 (2016) 371 | DOI

[7] S Galkin, E Shinder, The Fano variety of lines and rationality problem for a cubic hypersurface, preprint (2014)

[8] B Hassett, Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999) 103

[9] B Hassett, A Kresch, Y Tschinkel, Stable rationality and conic bundles, Math. Ann. 365 (2016) 1201 | DOI

[10] B Hassett, A Pirutka, Y Tschinkel, Stable rationality of quadric surface bundles over surfaces, Acta Math. 220 (2018) 341 | DOI

[11] B Hassett, A Pirutka, Y Tschinkel, A very general quartic double fourfold is not stably rational, Algebr. Geom. 6 (2019) 64

[12] B Hassett, Y Tschinkel, On stable rationality of Fano threefolds and del Pezzo fibrations, J. Reine Angew. Math. 751 (2019) 275 | DOI

[13] V A Iskovskih, J I Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. 86(128) (1971) 140

[14] G Mongardi, J C Ottem, Curve classes on irreducible holomorphic symplectic varieties, preprint (2018)

[15] T Okada, Stable rationality of cyclic covers of projective spaces, Proc. Edinb. Math. Soc. 62 (2019) 667 | DOI

[16] M Shen, On relations among 1–cycles on cubic hypersurfaces, J. Algebraic Geom. 23 (2014) 539 | DOI

[17] M Shen, Prym–Tjurin constructions on cubic hypersurfaces, Doc. Math. 19 (2014) 867

[18] B Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc. 29 (2016) 883 | DOI

[19] B Totaro, The integral cohomology of the Hilbert scheme of two points, Forum Math. Sigma 4 (2016) | DOI

[20] V Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero, Int. Math. Res. Not. 1995 (1995) 187 | DOI

[21] C Voisin, Théorème de Torelli pour les cubiques de P5, Invent. Math. 86 (1986) 577 | DOI

[22] C Voisin, Remarks on zero-cycles of self-products of varieties, from: "Moduli of vector bundles" (editor M Maruyama), Lecture Notes in Pure and Appl. Math. 179, Dekker (1996) 265

[23] C Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007) 261 | DOI

[24] C Voisin, Abel–Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic Geom. 22 (2013) 141 | DOI

[25] C Voisin, Unirational threefolds with no universal codimension 2 cycle, Invent. Math. 201 (2015) 207 | DOI

[26] C Voisin, On the universal CH0 group of cubic hypersurfaces, J. Eur. Math. Soc. 19 (2017) 1619 | DOI

Cité par Sources :