Inradius collapsed manifolds
Geometry & topology, Tome 23 (2019) no. 6, pp. 2793-2860.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study collapsed manifolds with boundary, where we assume a lower sectional curvature bound, two side bounds on the second fundamental forms of boundaries and upper diameter bound. Our main concern is the case when inradii of manifolds converge to zero. This is a typical case of collapsing manifolds with boundary. We determine the limit spaces of inradius collapsed manifolds as Alexandrov spaces with curvature uniformly bounded below. When the limit space has codimension one, we completely determine the topology of inradius collapsed manifold in terms of singular I–bundles. General inradius collapse to almost regular spaces are also characterized. In the general case of unbounded diameters, we prove that the number of boundary components of inradius collapsed manifolds is at most two, where the disconnected boundary happens if and only if the manifold has a topological product structure.

DOI : 10.2140/gt.2019.23.2793
Classification : 53C20, 53C21, 53C23
Keywords: collapse, Gromov–Hausdorff convergence, manifold with boundary, inradius

Yamaguchi, Takao 1 ; Zhang, Zhilang 2

1 Department of Mathematics, Kyoto University, Kyoto, Japan
2 School of Mathematics and Big Data, Foshan University, Foshan, China, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
@article{GT_2019_23_6_a1,
     author = {Yamaguchi, Takao and Zhang, Zhilang},
     title = {Inradius collapsed manifolds},
     journal = {Geometry & topology},
     pages = {2793--2860},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.2793},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2793/}
}
TY  - JOUR
AU  - Yamaguchi, Takao
AU  - Zhang, Zhilang
TI  - Inradius collapsed manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 2793
EP  - 2860
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2793/
DO  - 10.2140/gt.2019.23.2793
ID  - GT_2019_23_6_a1
ER  - 
%0 Journal Article
%A Yamaguchi, Takao
%A Zhang, Zhilang
%T Inradius collapsed manifolds
%J Geometry & topology
%D 2019
%P 2793-2860
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2793/
%R 10.2140/gt.2019.23.2793
%F GT_2019_23_6_a1
Yamaguchi, Takao; Zhang, Zhilang. Inradius collapsed manifolds. Geometry & topology, Tome 23 (2019) no. 6, pp. 2793-2860. doi : 10.2140/gt.2019.23.2793. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2793/

[1] S B Alexander, R L Bishop, Thin Riemannian manifolds with boundary, Math. Ann. 311 (1998) 55 | DOI

[2] M Anderson, A Katsuda, Y Kurylev, M Lassas, M Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem, Invent. Math. 158 (2004) 261 | DOI

[3] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[4] Y Burago, M Gromov, G Perelman, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222

[5] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 | DOI

[6] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 | DOI

[7] J Cheeger, K Fukaya, M Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 | DOI

[8] T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173 | DOI

[9] K Fukaya, T Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992) 253 | DOI

[10] M Gromov, Synthetic geometry in Riemannian manifolds, from: "Proceedings of the International Congress of Mathematicians" (editor O Lehto), Acad. Sci. Fennica (1980) 415

[11] J Harvey, C Searle, Orientation and symmetries of Alexandrov spaces with applications in positive curvature, J. Geom. Anal. 27 (2017) 1636 | DOI

[12] V Kapovitch, Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal. 12 (2002) 121 | DOI

[13] V Kapovitch, Perelman’s stability theorem, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International (2007) 103 | DOI

[14] V Kapovitch, A Petrunin, W Tuschmann, Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math. 171 (2010) 343 | DOI

[15] V Kapovitch, B Wilking, Structure of fundamental groups of manifolds with Ricci curvature bounded below, preprint (2011)

[16] S Kodani, Convergence theorem for Riemannian manifolds with boundary, Compositio Math. 75 (1990) 171

[17] N N Kosovskiĭ, Gluing of Riemannian manifolds of curvature ≥ κ, Algebra i Analiz 14 (2002) 140

[18] A Mitsuishi, T Yamaguchi, Collapsing three-dimensional Alexandrov spaces with boundary, in preparation

[19] A Mitsuishi, T Yamaguchi, Collapsing three-dimensional closed Alexandrov spaces with a lower curvature bound, Trans. Amer. Math. Soc. 367 (2015) 2339 | DOI

[20] Y Otsu, T Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994) 629 | DOI

[21] G Perelman, Alexandrov spaces with curvature bounded below, II, preprint (1991)

[22] G Y Perelman, Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993) 232

[23] G Y Perelman, A M Petrunin, Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem, Algebra i Analiz 5 (1993) 242

[24] G Perelman, A Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, preprint (1995)

[25] A Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998) 123 | DOI

[26] A Petrunin, Semiconcave functions in Alexandrov’s geometry, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International (2007) 137 | DOI

[27] T Shioya, T Yamaguchi, Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000) 1 | DOI

[28] T Shioya, T Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 (2005) 131 | DOI

[29] J A Wong, Collapsing manifolds with boundary, PhD thesis, University of Illinois at Urbana-Champaign (2006)

[30] J Wong, An extension procedure for manifolds with boundary, Pacific J. Math. 235 (2008) 173 | DOI

[31] J Wong, Collapsing manifolds with boundary, Geom. Dedicata 149 (2010) 291 | DOI

[32] T Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991) 317 | DOI

[33] T Yamaguchi, A convergence theorem in the geometry of Alexandrov spaces, from: "Actes de la table ronde de géométrie différentielle" (editor A L Besse), Sémin. Congr. 1, Soc. Mat. de France (1996) 601

[34] T Yamaguchi, Collapsing 4–manifolds under a lower curvature bound, preprint (2012)

[35] T Yamaguchi, Z Zhang, Convergence of manifolds with boundary, in preparation

Cité par Sources :