On the symplectic cohomology of log Calabi–Yau surfaces
Geometry & topology, Tome 23 (2019) no. 6, pp. 2701-2792.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the symplectic cohomology of affine algebraic surfaces that admit a compactification by a normal crossings anticanonical divisor. Using a toroidal structure near the compactification divisor, we describe the complex computing symplectic cohomology, and compute enough differentials to identify a basis for the degree zero part of the symplectic cohomology. This basis is indexed by integral points in a certain integral affine manifold, providing a relationship to the theta functions of Gross, Hacking and Keel. Included is a discussion of wrapped Floer cohomology of Lagrangian submanifolds and a description of the product structure in a special case. We also show that, after enhancing the coefficient ring, the degree zero symplectic cohomology defines a family degenerating to a singular surface obtained by gluing together several affine planes.

DOI : 10.2140/gt.2019.23.2701
Classification : 53D40, 14J33, 53D37
Keywords: symplectic cohomology, log Calabi–Yau surface, affine manifold, wrapped Floer cohomology

Pascaleff, James 1

1 Department of Mathematics, University of Texas at Austin, Austin, TX, United States, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
@article{GT_2019_23_6_a0,
     author = {Pascaleff, James},
     title = {On the symplectic cohomology of log {Calabi{\textendash}Yau} surfaces},
     journal = {Geometry & topology},
     pages = {2701--2792},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2019},
     doi = {10.2140/gt.2019.23.2701},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2701/}
}
TY  - JOUR
AU  - Pascaleff, James
TI  - On the symplectic cohomology of log Calabi–Yau surfaces
JO  - Geometry & topology
PY  - 2019
SP  - 2701
EP  - 2792
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2701/
DO  - 10.2140/gt.2019.23.2701
ID  - GT_2019_23_6_a0
ER  - 
%0 Journal Article
%A Pascaleff, James
%T On the symplectic cohomology of log Calabi–Yau surfaces
%J Geometry & topology
%D 2019
%P 2701-2792
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2701/
%R 10.2140/gt.2019.23.2701
%F GT_2019_23_6_a0
Pascaleff, James. On the symplectic cohomology of log Calabi–Yau surfaces. Geometry & topology, Tome 23 (2019) no. 6, pp. 2701-2792. doi : 10.2140/gt.2019.23.2701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2701/

[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254 | DOI

[2] A Abbondandolo, M Schwarz, Floer homology of cotangent bundles and the loop product, Geom. Topol. 14 (2010) 1569 | DOI

[3] M Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010) 191 | DOI

[4] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271 | DOI

[5] M Abouzaid, D Auroux, L Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 199 | DOI

[6] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[7] V I Arnold, Mathematical methods of classical mechanics, 60, Springer (1989) | DOI

[8] D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[9] F Bourgeois, V Colin, Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299 | DOI

[10] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[11] F Bourgeois, A Oancea, An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009) 611 | DOI

[12] K Chan, K Ueda, Dual torus fibrations and homological mirror symmetry for An–singlarities, Commun. Number Theory Phys. 7 (2013) 361 | DOI

[13] M Chas, D Sullivan, String topology, preprint (1999)

[14] L Diogo, Filtered Floer and symplectic homology via Gromov–Witten theory, PhD thesis, Stanford University (2012)

[15] J D Evans, Symplectic mapping class groups of some Stein and rational surfaces, J. Symplectic Geom. 9 (2011) 45 | DOI

[16] T Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982) 503

[17] S Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, PhD thesis, Massachusetts Institute of Technology (2012)

[18] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[19] M Gerstenhaber, S D Schack, Algebraic cohomology and deformation theory, from: "Deformation theory of algebras and structures and applications" (editors M Hazewinkel, M Gerstenhaber), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 247, Kluwer (1988) 11 | DOI

[20] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[21] M Gross, B Siebert, Theta functions and mirror symmetry, from: "Surveys in differential geometry 2016: advances in geometry and mathematical physics" (editors H D Cao, S T Yau), Surv. Differ. Geom. 21, International (2016) 95 | DOI

[22] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[23] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169 | DOI

[24] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 120

[25] D Mcduff, D Salamon, Introduction to symplectic topology, Clarendon (1998)

[26] M Mclean, The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal. 22 (2012) 369 | DOI

[27] M Mclean, Local Floer homology and infinitely many simple Reeb orbits, Algebr. Geom. Topol. 12 (2012) 1901 | DOI

[28] B Parker, Exploded fibrations, from: "Proceedings of Gökova Geometry–Topology Conference 2006" (editors S Akbulut, T Önder, R J Stern), GGT (2007) 52

[29] J Pascaleff, Floer cohomology in the mirror of the projective plane and a binodal cubic curve, Duke Math. J. 163 (2014) 2427 | DOI

[30] A F Ritter, Topological quantum field theory structure on symplectic cohomology, J. Topol. 6 (2013) 391 | DOI

[31] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050 | DOI

[32] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211

[33] P Seidel, Symplectic homology as Hochschild homology, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415 | DOI

[34] P Seidel, J P Solomon, Symplectic cohomology and q–intersection numbers, Geom. Funct. Anal. 22 (2012) 443 | DOI

[35] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[36] C Viterbo, Functors and computations in Floer homology with applications, II, preprint (2003)

[37] A Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differential Equations 33 (1979) 353 | DOI

[38] R O Wells Jr., Differential analysis on complex manifolds, 65, Springer (1980) | DOI

[39] M Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999) 3

Cité par Sources :