Geometrically simply connected 4–manifolds and stable cohomotopy Seiberg–Witten invariants
Geometry & topology, Tome 23 (2019) no. 5, pp. 2685-2697.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that every positive definite closed 4–manifold with b2+ > 1 and without 1–handles has a vanishing stable cohomotopy Seiberg–Witten invariant, and thus admits no symplectic structure. We also show that every closed oriented 4–manifold with b2+1 and b21(mod4) and without 1–handles admits no symplectic structure for at least one orientation of the manifold. In fact, relaxing the 1–handle condition, we prove these results under more general conditions which are much easier to verify.

DOI : 10.2140/gt.2019.23.2685
Classification : 57R55, 57R17, 57R65
Keywords: $4$–manifolds, handle decompositions, stable cohomotopy Seiberg–Witten invariants, symplectic structures

Yasui, Kouichi 1

1 Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
@article{GT_2019_23_5_a9,
     author = {Yasui, Kouichi},
     title = {Geometrically simply connected 4{\textendash}manifolds and stable cohomotopy {Seiberg{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {2685--2697},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2019},
     doi = {10.2140/gt.2019.23.2685},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2685/}
}
TY  - JOUR
AU  - Yasui, Kouichi
TI  - Geometrically simply connected 4–manifolds and stable cohomotopy Seiberg–Witten invariants
JO  - Geometry & topology
PY  - 2019
SP  - 2685
EP  - 2697
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2685/
DO  - 10.2140/gt.2019.23.2685
ID  - GT_2019_23_5_a9
ER  - 
%0 Journal Article
%A Yasui, Kouichi
%T Geometrically simply connected 4–manifolds and stable cohomotopy Seiberg–Witten invariants
%J Geometry & topology
%D 2019
%P 2685-2697
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2685/
%R 10.2140/gt.2019.23.2685
%F GT_2019_23_5_a9
Yasui, Kouichi. Geometrically simply connected 4–manifolds and stable cohomotopy Seiberg–Witten invariants. Geometry & topology, Tome 23 (2019) no. 5, pp. 2685-2697. doi : 10.2140/gt.2019.23.2685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2685/

[1] S Akbulut, The Dolgachev surface : disproving the Harer–Kas–Kirby conjecture, Comment. Math. Helv. 87 (2012) 187 | DOI

[2] S Akbulut, R Kirby, Branched covers of surfaces in 4–manifolds, Math. Ann. 252 (1979/80) 111 | DOI

[3] A Akhmedov, M Ishida, B D Park, Reducible smooth structures on 4–manifolds with zero signature, J. Topol. 7 (2014) 607 | DOI

[4] S Bauer, A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21 | DOI

[5] S Bauer, Refined Seiberg–Witten invariants, from: "Different faces of geometry" (editors S Donaldson, Y Eliashberg, M Gromov), Int. Math. Ser. (NY) 3, Kluwer (2004) 1 | DOI

[6] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1 | DOI

[7] R İ Baykur, M Ishida, Families of 4–manifolds with nontrivial stable cohomotopy Seiberg–Witten invariants, and normalized Ricci flow, J. Geom. Anal. 24 (2014) 1716 | DOI

[8] A Beauville, Surfaces complexes et orientation, from: "Geometry of surfaces : moduli and periods", Astérisque 126, Soc. Mat. de France (1985) 41

[9] R Fintushel, R J Stern, Immersed spheres in 4–manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995) 145

[10] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363 | DOI

[11] K A Frøyshov, Monopoles over 4–manifolds containing long necks, I, Geom. Topol. 9 (2005) 1 | DOI

[12] K A Frøyshov, Compactness and gluing theory for monopoles, 15, Geometry Topology Publications (2008)

[13] R E Gompf, Nuclei of elliptic surfaces, Topology 30 (1991) 479 | DOI

[14] R E Gompf, A I Stipsicz, 4–Manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[15] J Harer, On handlebody structures for hypersurfaces in C3 and CP3, Math. Ann. 238 (1978) 51 | DOI

[16] J Harer, A Kas, R Kirby, Handlebody decompositions of complex surfaces, 350, Amer. Math. Soc. (1986) | DOI

[17] J Hom, T Lidman, A note on positive-definite, symplectic four-manifolds, J. Eur. Math. Soc. 21 (2019) 257 | DOI

[18] M Ishida, C Lebrun, Curvature, connected sums, and Seiberg–Witten theory, Comm. Anal. Geom. 11 (2003) 809 | DOI

[19] M Ishida, H Sasahira, Stable cohomotopy Seiberg–Witten invariants of connected sums of four-manifolds with positive first Betti number, I : Non-vanishing theorem, Internat. J. Math. 26 (2015) | DOI

[20] M Ishida, H Sasahira, Stable cohomotopy Seiberg–Witten invariants of connected sums of four-manifolds with positive first Betti number, II : Applications, Comm. Anal. Geom. 25 (2017) 373 | DOI

[21] A Juhász, D P Thurston, I Zemke, Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)

[22] T Khandhawit, J Lin, H Sasahira, Unfolded Seiberg–Witten Floer spectra, II : Relative invariants and the gluing theorem, preprint (2018)

[23] R Kirby, Problems in low dimensional manifold theory, II, from: "Algebraic and geometric topology" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 273

[24] D Kotschick, Orientation-reversing homeomorphisms in surface geography, Math. Ann. 292 (1992) 375 | DOI

[25] D Kotschick, Orientations and geometrisations of compact complex surfaces, Bull. London Math. Soc. 29 (1997) 145 | DOI

[26] D Kotschick, J W Morgan, C H Taubes, Four-manifolds without symplectic structures but with nontrivial Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 119 | DOI

[27] P B Kronheimer, Minimal genus in S1 × M3, Invent. Math. 135 (1999) 45 | DOI

[28] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797 | DOI

[29] V T Liem, G A Venema, Representing homology classes of simply connected 4-manifolds, Topology Appl. 120 (2002) 57 | DOI

[30] R Mandelbaum, Special handlebody decompositions of simply connected algebraic surfaces, Proc. Amer. Math. Soc. 80 (1980) 359 | DOI

[31] J W Morgan, Z Szabó, C H Taubes, A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706 | DOI

[32] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[33] J Park, The geography of symplectic 4-manifolds with an arbitrary fundamental group, Proc. Amer. Math. Soc. 135 (2007) 2301 | DOI

[34] J Rasmussen, Perfect Morse functions and exotic S2 × S2’s, preprint (2010)

[35] H Sasahira, Spin structures on Seiberg–Witten moduli spaces, J. Math. Sci. Univ. Tokyo 13 (2006) 347

[36] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809 | DOI

[37] K Yasui, Exotic rational elliptic surfaces without 1–handles, Algebr. Geom. Topol. 8 (2008) 971 | DOI

[38] K Yasui, Elliptic surfaces without 1–handles, J. Topol. 1 (2008) 857 | DOI

[39] K Yasui, Small exotic rational surfaces without 1– and 3–handles, Trans. Amer. Math. Soc. 362 (2010) 5893 | DOI

[40] K Yasui, Stably exotic 4–manifolds, in preparation

[41] I Zemke, Graph cobordisms and Heegaard Floer homology, preprint (2015)

Cité par Sources :