Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the language of twisted skew-commutative algebras, we define secondary representation stability, a stability pattern in the unstable homology of spaces that are representation stable in the sense of Church, Ellenberg and Farb (2015). We show that the rational homology of configuration spaces of ordered points in noncompact manifolds satisfies secondary representation stability. While representation stability for the homology of configuration spaces involves stabilizing by introducing a point “near infinity”, secondary representation stability involves stabilizing by introducing a pair of orbiting points — an operation that relates homology groups in different homological degrees. This result can be thought of as a representation-theoretic analogue of secondary homological stability in the sense of Galatius, Kupers and Randal-Williams (2018). In the course of the proof we establish some additional results: we give a new characterization of the homology of the complex of injective words, and we give a new proof of integral representation stability for configuration spaces of noncompact manifolds, extending previous results to nonorientable manifolds.
Miller, Jeremy 1 ; Wilson, Jennifer 2
@article{GT_2019_23_5_a6, author = {Miller, Jeremy and Wilson, Jennifer}, title = {Higher-order representation stability and ordered configuration spaces of manifolds}, journal = {Geometry & topology}, pages = {2519--2591}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2019}, doi = {10.2140/gt.2019.23.2519}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2519/} }
TY - JOUR AU - Miller, Jeremy AU - Wilson, Jennifer TI - Higher-order representation stability and ordered configuration spaces of manifolds JO - Geometry & topology PY - 2019 SP - 2519 EP - 2591 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2519/ DO - 10.2140/gt.2019.23.2519 ID - GT_2019_23_5_a6 ER -
%0 Journal Article %A Miller, Jeremy %A Wilson, Jennifer %T Higher-order representation stability and ordered configuration spaces of manifolds %J Geometry & topology %D 2019 %P 2519-2591 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2519/ %R 10.2140/gt.2019.23.2519 %F GT_2019_23_5_a6
Miller, Jeremy; Wilson, Jennifer. Higher-order representation stability and ordered configuration spaces of manifolds. Geometry & topology, Tome 23 (2019) no. 5, pp. 2519-2591. doi : 10.2140/gt.2019.23.2519. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2519/
[1] On presentations of surface braid groups, J. Algebra 274 (2004) 543 | DOI
,[2] The cohomology of certain function spaces, Trans. Amer. Math. Soc. 326 (1991) 423 | DOI
, ,[3] Differential forms in algebraic topology, 82, Springer (1982) | DOI
, ,[4] Homology operations and loop spaces, Illinois J. Math. 4 (1960) 347
,[5] The homotopy type of the space of diffeomorphisms, I, Trans. Amer. Math. Soc. 196 (1974) 1 | DOI
, ,[6] FIG–modules, orbit configuration spaces, and complex reflection groups, preprint (2016)
,[7] Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012) 465 | DOI
,[8] Homology of FI–modules, Geom. Topol. 21 (2017) 2373 | DOI
, ,[9] FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833 | DOI
, , ,[10] FI–modules over Noetherian rings, Geom. Topol. 18 (2014) 2951 | DOI
, , , ,[11] Representation theory and homological stability, Adv. Math. 245 (2013) 250 | DOI
, ,[12] The homology of iterated loop spaces, 533, Springer (1976) | DOI
, , ,[13] Cellular homology for posets, Math. Japon. 23 (1979) 607
,[14] Cellular Ek–algebras, preprint (2018)
, , ,[15] E2–cells and mapping class groups, preprint (2018)
, , ,[16] A long exact sequence for homology of FI–modules, New York J. Math. 22 (2016) 1487
,[17] On central stability, Bull. Lond. Math. Soc. 49 (2017) 449 | DOI
, ,[18] Algebraic topology, Cambridge Univ. Press (2002)
,[19] Stabilization for mapping class groups of 3–manifolds, Duke Math. J. 155 (2010) 205 | DOI
, ,[20] Pairings and convergence of spectral sequences, Master’s thesis, University of Oslo (2017)
,[21] On the edge of the stable range, preprint (2016)
,[22] The complex of words and Nakaoka stability, Homology Homotopy Appl. 7 (2005) 77
,[23] Improved homological stability for configuration spaces after inverting 2, Homology Homotopy Appl. 17 (2015) 255 | DOI
, ,[24] En–cell attachments and a local-to-global principle for homological stability, Math. Ann. 370 (2018) 209 | DOI
, ,[25] Products in exact couples, Ann. of Math. 59 (1954) 558 | DOI
,[26] The geometry of iterated loop spaces, 271, Springer (1972) | DOI
,[27] Scanning for oriented configuration spaces, Homology Homotopy Appl. 17 (2015) 35 | DOI
, ,[28] Lie superalgebras and enveloping algebras, 131, Amer. Math. Soc. (2012) | DOI
,[29] Noetherianity of some degree two twisted commutative algebras, Selecta Math. 22 (2016) 913 | DOI
, , ,[30] Noetherianity of some degree two twisted skew-commutative algebras, Selecta Math. 25 (2019) | DOI
, , ,[31] Twisted homological stability for configuration spaces, Homology Homotopy Appl. 20 (2018) 145 | DOI
,[32] Central stability homology, preprint (2017)
,[33] Stability in the homology of congruence subgroups, Invent. Math. 202 (2015) 987 | DOI
,[34] Representation stability and finite linear groups, Duke Math. J. 166 (2017) 2521 | DOI
, ,[35] Homological stability for unordered configuration spaces, Q. J. Math. 64 (2013) 303 | DOI
,[36] Free Lie algebras, 7, Oxford Univ. Press (1993)
,[37] Representations of graded Lie algebras, Trans. Amer. Math. Soc. 120 (1965) 17 | DOI
,[38] An introduction to homological algebra, Springer (2009) | DOI
,[39] Introduction to twisted commutative algebras, preprint (2012)
, ,[40] Stability patterns in representation theory, Forum Math. Sigma 3 (2015) | DOI
, ,[41] The (non-equivariant) homology of the little disks operad, from: "OPERADS 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France (2013) 253
,[42] Syzygies of Segre embeddings and Δ–modules, Duke Math. J. 162 (2013) 225 | DOI
,[43] The Steinberg character of a finite group with BN–pair, from: "The theory of finite groups", Benjamin (1969) 213
,[44] A practical view of Ŵ : a guide to working with Weyl group representations, with special emphasis on branching rules, workshop notes (2006)
,[45] Configuration spaces of algebraic varieties, Topology 35 (1996) 1057 | DOI
,[46] On the braid groups for the Möbius band, J. Pure Appl. Algebra 169 (2002) 91 | DOI
,Cité par Sources :