The extended Bogomolny equations and generalized Nahm pole boundary condition
Geometry & topology, Tome 23 (2019) no. 5, pp. 2475-2517.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a Kobayashi–Hitchin-type correspondence between solutions of the extended Bogomolny equations on Σ × + with Nahm pole singularity at Σ ×{0} and the Hitchin component of the stable SL(2, ) Higgs bundle; this verifies a conjecture of Gaiotto and Witten. We also develop a partial Kobayashi–Hitchin correspondence for solutions with a knot singularity in this program, corresponding to the non-Hitchin components in the moduli space of stable SL(2, ) Higgs bundles. We also prove existence and uniqueness of solutions with knot singularities on × +.

DOI : 10.2140/gt.2019.23.2475
Classification : 53C07
Keywords: Kapustin–Witten equations, Nahm pole, Kobayashi–Hitchin correspondence

He, Siqi 1 ; Mazzeo, Rafe 2

1 Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, United States
2 Department of Mathematics, Stanford University, Stanford, CA, United States
@article{GT_2019_23_5_a5,
     author = {He, Siqi and Mazzeo, Rafe},
     title = {The extended {Bogomolny} equations and generalized {Nahm} pole boundary condition},
     journal = {Geometry & topology},
     pages = {2475--2517},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2019},
     doi = {10.2140/gt.2019.23.2475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/}
}
TY  - JOUR
AU  - He, Siqi
AU  - Mazzeo, Rafe
TI  - The extended Bogomolny equations and generalized Nahm pole boundary condition
JO  - Geometry & topology
PY  - 2019
SP  - 2475
EP  - 2517
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/
DO  - 10.2140/gt.2019.23.2475
ID  - GT_2019_23_5_a5
ER  - 
%0 Journal Article
%A He, Siqi
%A Mazzeo, Rafe
%T The extended Bogomolny equations and generalized Nahm pole boundary condition
%J Geometry & topology
%D 2019
%P 2475-2517
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/
%R 10.2140/gt.2019.23.2475
%F GT_2019_23_5_a5
He, Siqi; Mazzeo, Rafe. The extended Bogomolny equations and generalized Nahm pole boundary condition. Geometry & topology, Tome 23 (2019) no. 5, pp. 2475-2517. doi : 10.2140/gt.2019.23.2475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/

[1] M Abouzaid, C Manolescu, A sheaf-theoretic model for SL(2,C) Floer homology, preprint (2017)

[2] P Albin, É Leichtnam, R Mazzeo, P Piazza, The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. 45 (2012) 241 | DOI

[3] P Albin, E Leichtnam, R Mazzeo, P Piazza, Hodge theory on Cheeger spaces, J. Reine Angew. Math. 744 (2018) 29 | DOI

[4] M F Atiyah, Geometry of Yang–Mills fields, from: "Mathematical problems in theoretical physics" (editors G Dell’Antonio, S Doplicher, G Jona-Lasinio), Lecture Notes in Phys. 80, Springer (1978) 216

[5] M Atiyah, New invariants of 3– and 4–dimensional manifolds, from: "The mathematical heritage of Hermann Weyl" (editor R O Wells Jr.), Proc. Sympos. Pure Math. 48, Amer. Math. Soc. (1988) 285 | DOI

[6] L A Caffarelli, X Cabré, Fully nonlinear elliptic equations, 43, Amer. Math. Soc. (1995) | DOI

[7] P T Chruściel, R Mazzeo, Initial data sets with ends of cylindrical type, I : The Lichnerowicz equation, Ann. Henri Poincaré 16 (2015) 1231 | DOI

[8] B Collier, Q Li, Asymptotics of Higgs bundles in the Hitchin component, Adv. Math. 307 (2017) 488 | DOI

[9] A Daemi, K Fukaya, Atiyah–Floer conjecture : a formulation, a strategy of proof and generalizations, from: "Modern geometry : a celebration of the work of Simon Donaldson" (editors V Muñoz, I Smith, R P Thomas), Proc. Sympos. Pure Math. 99, Amer. Math. Soc. (2018) 23

[10] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 | DOI

[11] D Gaiotto, E Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys. 16 (2012) 935 | DOI

[12] A Haydys, Fukaya–Seidel category and gauge theory, J. Symplectic Geom. 13 (2015) 151 | DOI

[13] S He, A gluing theorem for the Kapustin–Witten equations with a Nahm pole, preprint (2017)

[14] S He, The expansions of the Nahm pole solutions to the Kapustin–Witten equations, preprint (2018)

[15] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI

[16] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI

[17] H Ishii, P L Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990) 26 | DOI

[18] A Kapustin, E Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1 | DOI

[19] P B Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geom. 32 (1990) 473 | DOI

[20] R Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations 16 (1991) 1615 | DOI

[21] R Mazzeo, E Witten, The Nahm pole boundary condition, from: "The influence of Solomon Lefschetz in geometry and topology" (editors L Katzarkov, E Lupercio, F J Turrubiates), Contemp. Math. 621, Amer. Math. Soc. (2014) 171 | DOI

[22] R Mazzeo, E Witten, The KW equations and the Nahm pole boundary condition with knots, preprint (2017)

[23] J Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215 | DOI

[24] C H Taubes, Compactness theorems for SL(2;C) generalizations of the 4–dimensional anti-self dual equations, preprint (2013)

[25] C H Taubes, PSL(2; C) connections on 3–manifolds with L2 bounds on curvature, Camb. J. Math. 1 (2013) 239 | DOI

[26] K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI

[27] E Witten, Fivebranes and knots, Quantum Topol. 3 (2012) 1 | DOI

[28] E Witten, Two lectures on the Jones polynomial and Khovanov homology, from: "Lectures on geometry" (editor N M J Woodhouse), Oxford Univ. Press (2017) 1

[29] E Witten, Two lectures on gauge theory and Khovanov homology, from: "Modern geometry : a celebration of the work of Simon Donaldson" (editors V Muñoz, I Smith, R P Thomas), Proc. Sympos. Pure Math. 99, Amer. Math. Soc. (2018) 393

[30] J W Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971) 257 | DOI

Cité par Sources :