Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a Kobayashi–Hitchin-type correspondence between solutions of the extended Bogomolny equations on with Nahm pole singularity at and the Hitchin component of the stable Higgs bundle; this verifies a conjecture of Gaiotto and Witten. We also develop a partial Kobayashi–Hitchin correspondence for solutions with a knot singularity in this program, corresponding to the non-Hitchin components in the moduli space of stable Higgs bundles. We also prove existence and uniqueness of solutions with knot singularities on .
He, Siqi 1 ; Mazzeo, Rafe 2
@article{GT_2019_23_5_a5, author = {He, Siqi and Mazzeo, Rafe}, title = {The extended {Bogomolny} equations and generalized {Nahm} pole boundary condition}, journal = {Geometry & topology}, pages = {2475--2517}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2019}, doi = {10.2140/gt.2019.23.2475}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/} }
TY - JOUR AU - He, Siqi AU - Mazzeo, Rafe TI - The extended Bogomolny equations and generalized Nahm pole boundary condition JO - Geometry & topology PY - 2019 SP - 2475 EP - 2517 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/ DO - 10.2140/gt.2019.23.2475 ID - GT_2019_23_5_a5 ER -
%0 Journal Article %A He, Siqi %A Mazzeo, Rafe %T The extended Bogomolny equations and generalized Nahm pole boundary condition %J Geometry & topology %D 2019 %P 2475-2517 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/ %R 10.2140/gt.2019.23.2475 %F GT_2019_23_5_a5
He, Siqi; Mazzeo, Rafe. The extended Bogomolny equations and generalized Nahm pole boundary condition. Geometry & topology, Tome 23 (2019) no. 5, pp. 2475-2517. doi : 10.2140/gt.2019.23.2475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2475/
[1] A sheaf-theoretic model for SL(2,C) Floer homology, preprint (2017)
, ,[2] The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. 45 (2012) 241 | DOI
, , , ,[3] Hodge theory on Cheeger spaces, J. Reine Angew. Math. 744 (2018) 29 | DOI
, , , ,[4] Geometry of Yang–Mills fields, from: "Mathematical problems in theoretical physics" (editors G Dell’Antonio, S Doplicher, G Jona-Lasinio), Lecture Notes in Phys. 80, Springer (1978) 216
,[5] New invariants of 3– and 4–dimensional manifolds, from: "The mathematical heritage of Hermann Weyl" (editor R O Wells Jr.), Proc. Sympos. Pure Math. 48, Amer. Math. Soc. (1988) 285 | DOI
,[6] Fully nonlinear elliptic equations, 43, Amer. Math. Soc. (1995) | DOI
, ,[7] Initial data sets with ends of cylindrical type, I : The Lichnerowicz equation, Ann. Henri Poincaré 16 (2015) 1231 | DOI
, ,[8] Asymptotics of Higgs bundles in the Hitchin component, Adv. Math. 307 (2017) 488 | DOI
, ,[9] Atiyah–Floer conjecture : a formulation, a strategy of proof and generalizations, from: "Modern geometry : a celebration of the work of Simon Donaldson" (editors V Muñoz, I Smith, R P Thomas), Proc. Sympos. Pure Math. 99, Amer. Math. Soc. (2018) 23
, ,[10] Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 | DOI
,[11] Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys. 16 (2012) 935 | DOI
, ,[12] Fukaya–Seidel category and gauge theory, J. Symplectic Geom. 13 (2015) 151 | DOI
,[13] A gluing theorem for the Kapustin–Witten equations with a Nahm pole, preprint (2017)
,[14] The expansions of the Nahm pole solutions to the Kapustin–Witten equations, preprint (2018)
,[15] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI
,[16] Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI
,[17] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990) 26 | DOI
, ,[18] Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1 | DOI
, ,[19] Instantons and the geometry of the nilpotent variety, J. Differential Geom. 32 (1990) 473 | DOI
,[20] Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations 16 (1991) 1615 | DOI
,[21] The Nahm pole boundary condition, from: "The influence of Solomon Lefschetz in geometry and topology" (editors L Katzarkov, E Lupercio, F J Turrubiates), Contemp. Math. 621, Amer. Math. Soc. (2014) 171 | DOI
, ,[22] The KW equations and the Nahm pole boundary condition with knots, preprint (2017)
, ,[23] On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215 | DOI
,[24] Compactness theorems for SL(2;C) generalizations of the 4–dimensional anti-self dual equations, preprint (2013)
,[25] PSL(2; C) connections on 3–manifolds with L2 bounds on curvature, Camb. J. Math. 1 (2013) 239 | DOI
,[26] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI
, ,[27] Fivebranes and knots, Quantum Topol. 3 (2012) 1 | DOI
,[28] Two lectures on the Jones polynomial and Khovanov homology, from: "Lectures on geometry" (editor N M J Woodhouse), Oxford Univ. Press (2017) 1
,[29] Two lectures on gauge theory and Khovanov homology, from: "Modern geometry : a celebration of the work of Simon Donaldson" (editors V Muñoz, I Smith, R P Thomas), Proc. Sympos. Pure Math. 99, Amer. Math. Soc. (2018) 393
,[30] Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971) 257 | DOI
,Cité par Sources :