We give a bound, linear in the complexity of the surface, to the asymptotic dimension of the curve complex as well as the capacity dimension of the ending lamination space.
Keywords: asymptotic dimension, curve complex
Bestvina, Mladen 1 ; Bromberg, Ken 1
@article{10_2140_gt_2019_23_2227,
author = {Bestvina, Mladen and Bromberg, Ken},
title = {On the asymptotic dimension of the curve complex},
journal = {Geometry & topology},
pages = {2227--2276},
year = {2019},
volume = {23},
number = {5},
doi = {10.2140/gt.2019.23.2227},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2227/}
}
TY - JOUR AU - Bestvina, Mladen AU - Bromberg, Ken TI - On the asymptotic dimension of the curve complex JO - Geometry & topology PY - 2019 SP - 2227 EP - 2276 VL - 23 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2227/ DO - 10.2140/gt.2019.23.2227 ID - 10_2140_gt_2019_23_2227 ER -
Bestvina, Mladen; Bromberg, Ken. On the asymptotic dimension of the curve complex. Geometry & topology, Tome 23 (2019) no. 5, pp. 2227-2276. doi: 10.2140/gt.2019.23.2227
[1] , Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 | DOI
[2] , Quadratic bounds on the quasiconvexity of nested train track sequences, Topology Proc. 44 (2014) 365
[3] , , , Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc. 114 (2017) 890 | DOI
[4] , , The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. 77 (2008) 33 | DOI
[5] , , , Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1 | DOI
[6] , , Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 | DOI
[7] , Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281 | DOI
[8] , Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17 (2005) 70
[9] , Capacity dimension and embedding of hyperbolic spaces into the product of trees, Algebra i Analiz 17 (2005) 42
[10] , , Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60
[11] , On the topology of ending lamination space, Geom. Topol. 18 (2014) 2683 | DOI
[12] , , Sur les groupes hyperboliques d’après Mikhael Gromov, 83, Birkhäuser (1990) | DOI
[13] , Convex polytopes, 221, Springer (2003) | DOI
[14] , Geometry of the mapping class groups, I : Boundary amenability, Invent. Math. 175 (2009) 545 | DOI
[15] , The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157 | DOI
[16] , , The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. 84 (2011) 103 | DOI
[17] , Embedding mapping class groups into a finite product of trees, Groups Geom. Dyn. 11 (2017) 613 | DOI
[18] , The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (2018)
[19] , , Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625 | DOI
[20] , , Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol. 13 (2013) 2261 | DOI
[21] , , Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 | DOI
[22] , , Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI
[23] , , Quasiconvexity in the curve complex, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 309 | DOI
[24] , , Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI
[25] , A Higman embedding preserving asphericity, J. Amer. Math. Soc. 27 (2014) 1 | DOI
[26] , The geometry and topology of three-manifolds, lecture notes (1979)
[27] , Combinatorics of tight geodesics and stable lengths, Trans. Amer. Math. Soc. 367 (2015) 7323 | DOI
[28] , Lectures on polytopes, 152, Springer (1995) | DOI
Cité par Sources :