Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a perversity function in the sense of intersection homology theory, the method of intersection spaces assigns to certain oriented stratified spaces cell complexes whose ordinary reduced homology with real coefficients satisfies Poincaré duality across complementary perversities. The resulting homology theory is well known not to be isomorphic to intersection homology. For a two-strata pseudomanifold with product link bundle, we give a description of the cohomology of intersection spaces as a space of weighted harmonic forms on the regular part, equipped with a fibred scattering metric. Some consequences of our methods for the signature are discussed as well.
Banagl, Markus 1 ; Hunsicker, Eugénie 2
@article{GT_2019_23_5_a0, author = {Banagl, Markus and Hunsicker, Eug\'enie}, title = {Hodge theory for intersection space cohomology}, journal = {Geometry & topology}, pages = {2165--2225}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2019}, doi = {10.2140/gt.2019.23.2165}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2165/} }
TY - JOUR AU - Banagl, Markus AU - Hunsicker, Eugénie TI - Hodge theory for intersection space cohomology JO - Geometry & topology PY - 2019 SP - 2165 EP - 2225 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2165/ DO - 10.2140/gt.2019.23.2165 ID - GT_2019_23_5_a0 ER -
Banagl, Markus; Hunsicker, Eugénie. Hodge theory for intersection space cohomology. Geometry & topology, Tome 23 (2019) no. 5, pp. 2165-2225. doi : 10.2140/gt.2019.23.2165. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2165/
[1] Topological invariants of stratified spaces, Springer (2007) | DOI
,[2] Intersection spaces, spatial homology truncation, and string theory, 1997, Springer (2010) | DOI
,[3] Isometric group actions and the cohomology of flat fiber bundles, Groups Geom. Dyn. 7 (2013) 293 | DOI
,[4] Foliated stratified spaces and a de Rham complex describing intersection space cohomology, J. Differential Geom. 104 (2016) 1 | DOI
,[5] Intersection spaces, perverse sheaves and type IIB string theory, Adv. Theor. Math. Phys. 18 (2014) 363 | DOI
, , ,[6] Computing twisted signatures and L–classes of stratified spaces, Math. Ann. 326 (2003) 589 | DOI
, , ,[7] Intersection spaces, equivariant Moore approximation and the signature, J. Singul. 16 (2017) 141 | DOI
, ,[8] Deformation of singularities and the homology of intersection spaces, J. Topol. Anal. 4 (2012) 413 | DOI
, ,[9] Intersection spaces and hypersurface singularities, J. Singul. 5 (2012) 48 | DOI
, ,[10] Differential forms in algebraic topology, 82, Springer (1982) | DOI
, ,[11] Théorème de de Rham pour les variétés stratifiées, Ann. Global Anal. Geom. 9 (1991) 211 | DOI
, , ,[12] Intersection cohomology, simplicial blow-up and rational homotopy, 1214, Amer. Math. Soc. (2018) | DOI
, , ,[13] On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A. 76 (1979) 2103 | DOI
,[14] On the Hodge theory of Riemannian pseudomanifolds, from: "Geometry of the Laplace operator" (editors R Osserman, A Weinstein), Proc. Sympos. Pure Math. 36, Amer. Math. Soc. (1980) 91 | DOI
,[15] Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983) 575 | DOI
,[16] About a de Rham complex describing intersection space cohomology in a non-isolated singularity case, Diplomarbeit, Ruprecht-Karls-Universität Heidelberg (2012)
,[17] Singular intersection homology, book project (2019)
,[18] Additivity and non-additivity for perverse signatures, J. Reine Angew. Math. 676 (2013) 51 | DOI
, ,[19] Cup and cap products in intersection (co)homology, Adv. Math. 240 (2013) 383 | DOI
, ,[20] Intersection homology theory, Topology 19 (1980) 135 | DOI
, ,[21] Intersection homology, II, Invent. Math. 72 (1983) 77 | DOI
, ,[22] Pseudodifferential operator calculus for generalized Q–rank 1 locally symmetric spaces, II, in preparation
, ,[23] Hodge cohomology of gravitational instantons, Duke Math. J. 122 (2004) 485 | DOI
, , ,[24] Hodge and signature theorems for a family of manifolds with fibre bundle boundary, Geom. Topol. 11 (2007) 1581 | DOI
,[25] Extended Hodge theory for fibred cusp manifolds, J. Topol. Anal. 10 (2018) 531 | DOI
,[26] Topological invariance of intersection homology without sheaves, Topology Appl. 20 (1985) 149 | DOI
,[27] Poincaré duality for spaces with isolated singularities, Manuscripta Math. 153 (2017) 231 | DOI
,[28] Introductory functional analysis with applications, Wiley (1989)
,[29] Introduction to smooth manifolds, 218, Springer (2003) | DOI
,[30] The Atiyah–Patodi–Singer index theorem, 4, A K Peters (1993) | DOI
,[31] De Rham intersection cohomology for general perversities, Illinois J. Math. 49 (2005) 737 | DOI
,[32] On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958) 338 | DOI
,[33] Witt spaces : a geometric cycle theory for KO–homology at odd primes, Amer. J. Math. 105 (1983) 1067 | DOI
,[34] Algebraic topology, McGraw-Hill (1966) | DOI
,[35] K–theory of intersection spaces, PhD thesis, Ruprecht-Karls-Universität Heidelberg (2013)
,Cité par Sources :