Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that a Kähler group which is cubulable, i.e. which acts properly discontinuously and cocompactly on a cubical complex, has a finite-index subgroup isomorphic to a direct product of surface groups, possibly with a free abelian factor. Similarly, we prove that a closed aspherical Kähler manifold with a cubulable fundamental group has a finite cover which is biholomorphic to a topologically trivial principal torus bundle over a product of Riemann surfaces. Along the way, we prove a factorization result for essential actions of Kähler groups on irreducible, locally finite cubical complexes, under the assumption that there is no fixed point in the visual boundary.
Delzant, Thomas 1 ; Py, Pierre 2
@article{GT_2019_23_4_a8, author = {Delzant, Thomas and Py, Pierre}, title = {Cubulable {K\"ahler} groups}, journal = {Geometry & topology}, pages = {2125--2164}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, doi = {10.2140/gt.2019.23.2125}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2125/} }
Delzant, Thomas; Py, Pierre. Cubulable Kähler groups. Geometry & topology, Tome 23 (2019) no. 4, pp. 2125-2164. doi : 10.2140/gt.2019.23.2125. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2125/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[2] Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI
, , , , ,[3] On groups acting on nonpositively curved cubical complexes, Enseign. Math. 45 (1999) 51
, ,[4] Divergence and quasimorphisms of right-angled Artin groups, Math. Ann. 352 (2012) 339 | DOI
, ,[5] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431 | DOI
, , ,[6] A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI
, ,[7] On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc. 127 (1999) 2143 | DOI
,[8] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[9] Subgroups of direct products of elementarily free groups, Geom. Funct. Anal. 17 (2007) 385 | DOI
, ,[10] The subgroups of direct products of surface groups, Geom. Dedicata 92 (2002) 95 | DOI
, , , ,[11] Subgroups of direct products of limit groups, Ann. of Math. 170 (2009) 1447 | DOI
, , , ,[12] Cohomology of groups, 87, Springer (1994) | DOI
,[13] Fundamental groups of Kähler manifolds and geometric group theory, from: "Séminaire Bourbaki 2009/2010", Astérisque 339, Soc. Mat. de France (2011) 305
,[14] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI
, ,[15] Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. 69 (1989) 173 | DOI
, ,[16] Differentiable and deformation type of algebraic surfaces, real and symplectic structures, from: "Symplectic –manifolds and algebraic surfaces" (editors F Catanese, G Tian), Lecture Notes in Math. 1938, Springer (2008) 55 | DOI
,[17] The median class and superrigidity of actions on CAT(0) cube complexes, J. Topol. 9 (2016) 349 | DOI
, , ,[18] Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293 | DOI
,[19] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347 | DOI
, ,[20] Nonpositive curvature of blow-ups, Selecta Math. 4 (1998) 491 | DOI
, , ,[21] Tores et variétés abéliennes complexes, 6, Soc. Mat. de France (1999)
,[22] Trees, valuations and the Green–Lazarsfeld set, Geom. Funct. Anal. 18 (2008) 1236 | DOI
,[23] L’invariant de Bieri–Neumann–Strebel des groupes fondamentaux des variétés kählériennes, Math. Ann. 348 (2010) 119 | DOI
,[24] Cuts in Kähler groups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 31 | DOI
, ,[25] Complex analytic and differential geometry, book project (2012)
,[26] Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math. 629 (2009) 89 | DOI
, , ,[27] Geometric group theory, 63, Amer. Math. Soc. (2018)
, ,[28] Topological methods in group theory, 243, Springer (2008) | DOI
,[29] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI
,[30] Kähler hyperbolicity and L2–Hodge theory, J. Differential Geom. 33 (1991) 263 | DOI
,[31] Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) | DOI
,[32] Harmonic maps into singular spaces and p–adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992) 165 | DOI
, ,[33] Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal. 25 (2015) 134 | DOI
, ,[34] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[35] Ends of locally compact groups and their coset spaces, J. Austral. Math. Soc. 17 (1974) 274 | DOI
,[36] The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality, Probab. Theory Related Fields 91 (1992) 445 | DOI
, ,[37] The nonamenability of Schreier graphs for infinite index quasiconvex subgroups of hyperbolic groups, Enseign. Math. 48 (2002) 359
,[38] Energy of harmonic functions and Gromov’s proof of Stallings’ theorem, Georgian Math. J. 21 (2014) 281 | DOI
,[39] Ping pong on CAT(0) cube complexes, Comment. Math. Helv. 91 (2016) 543 | DOI
, ,[40] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI
, ,[41] Relative ends and duality groups, J. Pure Appl. Algebra 61 (1989) 197 | DOI
, ,[42] On the structure of complete Kähler manifolds with nonnegative curvature near infinity, Invent. Math. 99 (1990) 579 | DOI
,[43] Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992) 359 | DOI
, ,[44] Branched covers of elliptic curves and Kähler groups with exotic finiteness properties, Ann. Inst. Fourier (Grenoble) 69 (2019) 335 | DOI
,[45] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995) 809 | DOI
, ,[46] Hyperbolic Kähler manifolds and proper holomorphic mappings to Riemann surfaces, Geom. Funct. Anal. 11 (2001) 382 | DOI
, ,[47] Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups, Geom. Funct. Anal. 17 (2008) 1621 | DOI
, ,[48] L2 Castelnuovo–de Franchis, the cup product lemma, and filtered ends of Kähler manifolds, J. Topol. Anal. 1 (2009) 29 | DOI
, ,[49] Coxeter groups and Kähler groups, Math. Proc. Cambridge Philos. Soc. 155 (2013) 557 | DOI
,[50] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI
,[51] CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7
,[52] Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179 | DOI
,[53] Lefschetz theorems for the integral leaves of a holomorphic one-form, Compositio Math. 87 (1993) 99
,[54] The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. 112 (1980) 73 | DOI
,[55] Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150 | DOI
,[56] From riches to raags : 3–manifolds, right-angled Artin groups, and cubical geometry, 117, Amer. Math. Soc. (2012) | DOI
,Cité par Sources :