Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups
Geometry & topology, Tome 23 (2019) no. 4, pp. 2051-2124 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We investigate the holonomy group of singular Kähler–Einstein metrics on klt varieties with numerically trivial canonical divisor. Finiteness of the number of connected components, a Bochner principle for holomorphic tensors, and a connection between irreducibility of holonomy representations and stability of the tangent sheaf are established. As a consequence, known decompositions for tangent sheaves of varieties with trivial canonical divisor are refined. In particular, we show that up to finite quasi-étale covers, varieties with strongly stable tangent sheaf are either Calabi–Yau or irreducible holomorphic symplectic. These results form one building block for Höring and Peternell’s recent proof of a singular version of the Beauville–Bogomolov decomposition theorem.

DOI : 10.2140/gt.2019.23.2051
Classification : 14E30, 14J32, 32J27
Keywords: varieties with trivial canonical divisor, klt singularities, Kähler–Einstein metrics, stability, holonomy groups, Bochner principle, irreducible holomorphic symplectic varieties, Calabi–Yau varieties, differential forms, fundamental groups, decomposition

Greb, Daniel 1 ; Guenancia, Henri 2 ; Kebekus, Stefan 3

1 Essener Seminar für Algebraische Geometrie und Arithmetik, Fakultät für Mathematik, Universität Duisburg–Essen, Essen, Germany
2 Department of Mathematics, Stony Brook University, Stony Brook, NY, United States, Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
3 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany, Freiburg Institute for Advanced Studies, Freiburg im Breisgau, Germany, University of Strasbourg Institute for Advanced Study, Strasbourg, France
@article{10_2140_gt_2019_23_2051,
     author = {Greb, Daniel and Guenancia, Henri and Kebekus, Stefan},
     title = {Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups},
     journal = {Geometry & topology},
     pages = {2051--2124},
     year = {2019},
     volume = {23},
     number = {4},
     doi = {10.2140/gt.2019.23.2051},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/}
}
TY  - JOUR
AU  - Greb, Daniel
AU  - Guenancia, Henri
AU  - Kebekus, Stefan
TI  - Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups
JO  - Geometry & topology
PY  - 2019
SP  - 2051
EP  - 2124
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/
DO  - 10.2140/gt.2019.23.2051
ID  - 10_2140_gt_2019_23_2051
ER  - 
%0 Journal Article
%A Greb, Daniel
%A Guenancia, Henri
%A Kebekus, Stefan
%T Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups
%J Geometry & topology
%D 2019
%P 2051-2124
%V 23
%N 4
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/
%R 10.2140/gt.2019.23.2051
%F 10_2140_gt_2019_23_2051
Greb, Daniel; Guenancia, Henri; Kebekus, Stefan. Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups. Geometry & topology, Tome 23 (2019) no. 4, pp. 2051-2124. doi: 10.2140/gt.2019.23.2051

[1] D Arapura, Higgs bundles, integrability, and holomorphic forms, from: "Motives, polylogarithms and Hodge theory, II" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 605

[2] V Balaji, J Kollár, Holonomy groups of stable vector bundles, Publ. Res. Inst. Math. Sci. 44 (2008) 183 | DOI

[3] A Beauville, Some remarks on Kähler manifolds with c1 = 0, from: "Classification of algebraic and analytic manifolds" (editor K Ueno), Progr. Math. 39, Birkhäuser (1983) 1

[4] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI

[5] A J Berrick, Groups with no nontrivial linear representations, Bull. Austral. Math. Soc. 50 (1994) 1 | DOI

[6] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[7] C Birkar, P Cascini, C D Hacon, J Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI

[8] S Boucksom, P Eyssidieux, V Guedj, editors, An introduction to the Kähler–Ricci flow, 2086, Springer (2013) | DOI

[9] T Bröcker, T Tom Dieck, Representations of compact Lie groups, 98, Springer (1985) | DOI

[10] Y Brunebarbe, B Klingler, B Totaro, Symmetric differentials and the fundamental group, Duke Math. J. 162 (2013) 2797 | DOI

[11] D Bump, Lie groups, 225, Springer (2004) | DOI

[12] F Campana, On twistor spaces of the class C, J. Differential Geom. 33 (1991) 541 | DOI

[13] F Campana, Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom. 4 (1995) 487

[14] F Campana, H Guenancia, M Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. 46 (2013) 879 | DOI

[15] P Cascini, G L Nave, Kähler–Ricci flow and the minimal model program for projective varieties, preprint (2006)

[16] J P Demailly, Complex analytic and differential geometry, book project (2012)

[17] J P Demailly, N Pali, Degenerate complex Monge–Ampère equations over compact Kähler manifolds, Internat. J. Math. 21 (2010) 357 | DOI

[18] G Dethloff, H Grauert, Seminormal complex spaces, from: "Several complex variables, VII" (editors H Grauert, T Peternell, R Remmert), Encyclopaedia Math. Sci. 74, Springer (1994) 183 | DOI

[19] S Druel, A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math. 211 (2018) 245 | DOI

[20] P Eyssidieux, V Guedj, A Zeriahi, Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI

[21] F F Favale, Calabi–Yau quotients with terminal singularities, Boll. Unione Mat. Ital. 11 (2018) 55 | DOI

[22] W Fulton, J Harris, Representation theory: a first course, 129, Springer (1991) | DOI

[23] W Fulton, R Lazarsfeld, Connectivity and its applications in algebraic geometry, from: "Algebraic geometry" (editors A Libgober, P Wagreich), Lecture Notes in Mathematics 862, Springer (1981) 26 | DOI

[24] R Goodman, N R Wallach, Symmetry, representations, and invariants, 255, Springer (2009) | DOI

[25] D Greb, S Kebekus, S J Kovács, T Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011) 87 | DOI

[26] D Greb, S Kebekus, T Peternell, Reflexive differential forms on singular spaces. Geometry and cohomology, J. Reine Angew. Math. 697 (2014) 57 | DOI

[27] D Greb, S Kebekus, T Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 | DOI

[28] D Greb, S Kebekus, T Peternell, Movable curves and semistable sheaves, Int. Math. Res. Not. 2016 (2016) 536 | DOI

[29] D Greb, S Kebekus, T Peternell, Singular spaces with trivial canonical class, from: "Minimal models and extremal rays" (editors J Kollár, O Fujino, S Mukai, N Nakayama), Adv. Stud. Pure Math. 70, Math. Soc. Japan (2016) 67 | DOI

[30] A Grothendieck, Représentations linéaires et compactification profinie des groupes discrets, Manuscripta Math. 2 (1970) 375 | DOI

[31] A Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 224, Springer (1971)

[32] V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI

[33] H Guenancia, Semistability of the tangent sheaf of singular varieties, Algebr. Geom. 3 (2016) 508 | DOI

[34] R C Gunning, Introduction to holomorphic functions of several variables, III : Homological theory, Wadsworth and Brooks/Cole (1990)

[35] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[36] A Höring, T Peternell, Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math. 216 (2019) 395 | DOI

[37] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI

[38] D D Joyce, Compact manifolds with special holonomy, Oxford Univ. Press (2000)

[39] D Kaledin, M Lehn, C Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006) 591 | DOI

[40] B Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010) 815 | DOI

[41] B Klingler, Symmetric differentials, Kähler groups and ball quotients, Invent. Math. 192 (2013) 257 | DOI

[42] S Kobayashi, The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan 32 (1980) 325 | DOI

[43] S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI

[44] S Kobayashi, K Nomizu, Foundations of differential geometry, I, Wiley (1996)

[45] J Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press (1995) | DOI

[46] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[47] S Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 | DOI

[48] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004) | DOI

[49] D Matsushita, On base manifolds of Lagrangian fibrations, Sci. China Math. 58 (2015) 531 | DOI

[50] N Nakayama, Zariski-decomposition and abundance, 14, Math. Soc. Japan (2004) | DOI

[51] Y Namikawa, A note on symplectic singularities, preprint (2001)

[52] K Oguiso, J Sakurai, Calabi–Yau threefolds of quotient type, Asian J. Math. 5 (2001) 43 | DOI

[53] K Oguiso, S Schröer, Enriques manifolds, J. Reine Angew. Math. 661 (2011) 215 | DOI

[54] K Oguiso, D Q Zhang, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996) 1277 | DOI

[55] A Perego, A Rapagnetta, The moduli spaces of sheaves on K3 surfaces are irreducible symplectic varieties, preprint (2018)

[56] T Peternell, Minimal varieties with trivial canonical classes, I, Math. Z. 217 (1994) 377 | DOI

[57] M Păun, Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds, Chin. Ann. Math. Ser. B 29 (2008) 623 | DOI

[58] R Schoen, S T Yau, Lectures on differential geometry, I, International (1994)

[59] S Takayama, Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003) 825 | DOI

[60] G Tian, Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Mathematics 1646, Springer (1996) 143 | DOI

[61] G Tian, Z Zhang, On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179 | DOI

[62] H Tsuji, Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988) 123 | DOI

[63] S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI

[64] Z Zhang, On degenerate Monge–Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. 2006 (2006) | DOI

Cité par Sources :