We investigate the holonomy group of singular Kähler–Einstein metrics on klt varieties with numerically trivial canonical divisor. Finiteness of the number of connected components, a Bochner principle for holomorphic tensors, and a connection between irreducibility of holonomy representations and stability of the tangent sheaf are established. As a consequence, known decompositions for tangent sheaves of varieties with trivial canonical divisor are refined. In particular, we show that up to finite quasi-étale covers, varieties with strongly stable tangent sheaf are either Calabi–Yau or irreducible holomorphic symplectic. These results form one building block for Höring and Peternell’s recent proof of a singular version of the Beauville–Bogomolov decomposition theorem.
Keywords: varieties with trivial canonical divisor, klt singularities, Kähler–Einstein metrics, stability, holonomy groups, Bochner principle, irreducible holomorphic symplectic varieties, Calabi–Yau varieties, differential forms, fundamental groups, decomposition
Greb, Daniel 1 ; Guenancia, Henri 2 ; Kebekus, Stefan 3
@article{10_2140_gt_2019_23_2051,
author = {Greb, Daniel and Guenancia, Henri and Kebekus, Stefan},
title = {Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups},
journal = {Geometry & topology},
pages = {2051--2124},
year = {2019},
volume = {23},
number = {4},
doi = {10.2140/gt.2019.23.2051},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/}
}
TY - JOUR AU - Greb, Daniel AU - Guenancia, Henri AU - Kebekus, Stefan TI - Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups JO - Geometry & topology PY - 2019 SP - 2051 EP - 2124 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/ DO - 10.2140/gt.2019.23.2051 ID - 10_2140_gt_2019_23_2051 ER -
%0 Journal Article %A Greb, Daniel %A Guenancia, Henri %A Kebekus, Stefan %T Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups %J Geometry & topology %D 2019 %P 2051-2124 %V 23 %N 4 %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.2051/ %R 10.2140/gt.2019.23.2051 %F 10_2140_gt_2019_23_2051
Greb, Daniel; Guenancia, Henri; Kebekus, Stefan. Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups. Geometry & topology, Tome 23 (2019) no. 4, pp. 2051-2124. doi: 10.2140/gt.2019.23.2051
[1] , Higgs bundles, integrability, and holomorphic forms, from: "Motives, polylogarithms and Hodge theory, II" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 605
[2] , , Holonomy groups of stable vector bundles, Publ. Res. Inst. Math. Sci. 44 (2008) 183 | DOI
[3] , Some remarks on Kähler manifolds with c1 = 0, from: "Classification of algebraic and analytic manifolds" (editor K Ueno), Progr. Math. 39, Birkhäuser (1983) 1
[4] , Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755 | DOI
[5] , Groups with no nontrivial linear representations, Bull. Austral. Math. Soc. 50 (1994) 1 | DOI
[6] , Einstein manifolds, 10, Springer (1987) | DOI
[7] , , , , Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI
[8] , , , editors, An introduction to the Kähler–Ricci flow, 2086, Springer (2013) | DOI
[9] , , Representations of compact Lie groups, 98, Springer (1985) | DOI
[10] , , , Symmetric differentials and the fundamental group, Duke Math. J. 162 (2013) 2797 | DOI
[11] , Lie groups, 225, Springer (2004) | DOI
[12] , On twistor spaces of the class C, J. Differential Geom. 33 (1991) 541 | DOI
[13] , Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom. 4 (1995) 487
[14] , , , Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. 46 (2013) 879 | DOI
[15] , , Kähler–Ricci flow and the minimal model program for projective varieties, preprint (2006)
[16] , Complex analytic and differential geometry, book project (2012)
[17] , , Degenerate complex Monge–Ampère equations over compact Kähler manifolds, Internat. J. Math. 21 (2010) 357 | DOI
[18] , , Seminormal complex spaces, from: "Several complex variables, VII" (editors H Grauert, T Peternell, R Remmert), Encyclopaedia Math. Sci. 74, Springer (1994) 183 | DOI
[19] , A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math. 211 (2018) 245 | DOI
[20] , , , Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI
[21] , Calabi–Yau quotients with terminal singularities, Boll. Unione Mat. Ital. 11 (2018) 55 | DOI
[22] , , Representation theory: a first course, 129, Springer (1991) | DOI
[23] , , Connectivity and its applications in algebraic geometry, from: "Algebraic geometry" (editors A Libgober, P Wagreich), Lecture Notes in Mathematics 862, Springer (1981) 26 | DOI
[24] , , Symmetry, representations, and invariants, 255, Springer (2009) | DOI
[25] , , , , Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011) 87 | DOI
[26] , , , Reflexive differential forms on singular spaces. Geometry and cohomology, J. Reine Angew. Math. 697 (2014) 57 | DOI
[27] , , , Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 | DOI
[28] , , , Movable curves and semistable sheaves, Int. Math. Res. Not. 2016 (2016) 536 | DOI
[29] , , , Singular spaces with trivial canonical class, from: "Minimal models and extremal rays" (editors J Kollár, O Fujino, S Mukai, N Nakayama), Adv. Stud. Pure Math. 70, Math. Soc. Japan (2016) 67 | DOI
[30] , Représentations linéaires et compactification profinie des groupes discrets, Manuscripta Math. 2 (1970) 375 | DOI
[31] , Revêtements étales et groupe fondamental (SGA 1), 224, Springer (1971)
[32] , , The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI
[33] , Semistability of the tangent sheaf of singular varieties, Algebr. Geom. 3 (2016) 508 | DOI
[34] , Introduction to holomorphic functions of several variables, III : Homological theory, Wadsworth and Brooks/Cole (1990)
[35] , Algebraic geometry, 52, Springer (1977) | DOI
[36] , , Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math. 216 (2019) 395 | DOI
[37] , , The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI
[38] , Compact manifolds with special holonomy, Oxford Univ. Press (2000)
[39] , , , Singular symplectic moduli spaces, Invent. Math. 164 (2006) 591 | DOI
[40] , A new proof of Gromov’s theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010) 815 | DOI
[41] , Symmetric differentials, Kähler groups and ball quotients, Invent. Math. 192 (2013) 257 | DOI
[42] , The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan 32 (1980) 325 | DOI
[43] , Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI
[44] , , Foundations of differential geometry, I, Wiley (1996)
[45] , Shafarevich maps and automorphic forms, Princeton Univ. Press (1995) | DOI
[46] , , Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI
[47] , The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 | DOI
[48] , Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004) | DOI
[49] , On base manifolds of Lagrangian fibrations, Sci. China Math. 58 (2015) 531 | DOI
[50] , Zariski-decomposition and abundance, 14, Math. Soc. Japan (2004) | DOI
[51] , A note on symplectic singularities, preprint (2001)
[52] , , Calabi–Yau threefolds of quotient type, Asian J. Math. 5 (2001) 43 | DOI
[53] , , Enriques manifolds, J. Reine Angew. Math. 661 (2011) 215 | DOI
[54] , , On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996) 1277 | DOI
[55] , , The moduli spaces of sheaves on K3 surfaces are irreducible symplectic varieties, preprint (2018)
[56] , Minimal varieties with trivial canonical classes, I, Math. Z. 217 (1994) 377 | DOI
[57] , Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds, Chin. Ann. Math. Ser. B 29 (2008) 623 | DOI
[58] , , Lectures on differential geometry, I, International (1994)
[59] , Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003) 825 | DOI
[60] , Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Mathematics 1646, Springer (1996) 143 | DOI
[61] , , On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179 | DOI
[62] , Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988) 123 | DOI
[63] , On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI
[64] , On degenerate Monge–Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. 2006 (2006) | DOI
Cité par Sources :