Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Partial Bergman kernels are kernels of orthogonal projections onto subspaces of holomorphic sections of the power of an ample line bundle over a Kähler manifold . The subspaces of this article are spectral subspaces of the Toeplitz quantization of a smooth Hamiltonian . It is shown that the relative partial density of states satisfies where . Moreover it is shown that this partial density of states exhibits “Erf” asymptotics along the interface ; that is, the density profile asymptotically has a Gaussian error function shape interpolating between the values and of . Such “Erf” asymptotics are a universal edge effect. The different types of scaling asymptotics are reminiscent of the law of large numbers and the central limit theorem.
Zelditch, Steve 1 ; Zhou, Peng 2
@article{GT_2019_23_4_a5, author = {Zelditch, Steve and Zhou, Peng}, title = {Central limit theorem for spectral partial {Bergman} kernels}, journal = {Geometry & topology}, pages = {1961--2004}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, doi = {10.2140/gt.2019.23.1961}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1961/} }
TY - JOUR AU - Zelditch, Steve AU - Zhou, Peng TI - Central limit theorem for spectral partial Bergman kernels JO - Geometry & topology PY - 2019 SP - 1961 EP - 2004 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1961/ DO - 10.2140/gt.2019.23.1961 ID - GT_2019_23_4_a5 ER -
Zelditch, Steve; Zhou, Peng. Central limit theorem for spectral partial Bergman kernels. Geometry & topology, Tome 23 (2019) no. 4, pp. 1961-2004. doi : 10.2140/gt.2019.23.1961. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1961/
[1] Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009) 1485 | DOI
,[2] Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000) 351 | DOI
, , ,[3] Singular behavior at the edge of Laughlin states, Phys. Rev. B 89 (2014) | DOI
, , , ,[4] Berezin–Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003) 1 | DOI
,[5] Coherent states and projective representation of the linear canonical transformations, J. Math. Phys. 21 (1980) 1377 | DOI
,[6] Pointwise estimates for the weighted Bergman projection kernel in Cn, using a weighted L2 estimate for the ∂ equation, Ann. Inst. Fourier (Grenoble) 48 (1998) 967 | DOI
,[7] Spectral asymptotics in the semi-classical limit, 268, Cambridge Univ. Press (1999) | DOI
, ,[8] Bergman kernel from path integral, Comm. Math. Phys. 293 (2010) 205 | DOI
, ,[9] Harmonic analysis in phase space, 122, Princeton Univ. Press (1989) | DOI
,[10] The analysis of linear partial differential operators, IV : Fourier integral operators, 275, Springer (1985) | DOI
,[11] Sampling in weighted Lp spaces of entire functions in Cn and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001) 390 | DOI
,[12] Asymptotic expansion of the off-diagonal Bergman kernel on compact Kähler manifolds, J. Geom. Anal. 25 (2015) 761 | DOI
, ,[13] Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) | DOI
, ,[14] Fourier integral operators with complex-valued phase functions, from: "Fourier integral operators and partial differential equations" (editor J Chazarain), Lecture Notes in Math. 459, Springer (1975) 120 | DOI
, ,[15] The spectral theory of Toeplitz operators, 99, Princeton Univ. Press (1981) | DOI
, ,[16] Sur la singularité des noyaux de Bergman et de Szegő, from: "Journées : Équations aux dérivées partielles de Rennes", Astérisque 34–35, Soc. Math. France (1976) 123
, ,[17] Scaling asymptotics for quantized Hamiltonian flows, Internat. J. Math. 23 (2012) | DOI
,[18] Local scaling asymptotics in phase space and time in Berezin–Toeplitz quantization, Internat. J. Math. 25 (2014) | DOI
,[19] Toric partial density functions and stability of toric varieties, Math. Ann. 358 (2014) 879 | DOI
, ,[20] Autour de l’approximation semi-classique, 68, Birkhäuser (1987) | DOI
,[21] Asymptotics of partial density functions for divisors, J. Geom. Anal. 27 (2017) 1803 | DOI
, ,[22] The Cauchy problem for the homogeneous Monge–Ampère equation, I : Toeplitz quantization, J. Differential Geom. 90 (2012) 303
, ,[23] Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002) 181 | DOI
, ,[24] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43, Princeton Univ. Press (1993)
,[25] Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, Oxford Univ. Press (2004) | DOI
,[26] Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108 (2012) | DOI
,[27] Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47 (1997) 305 | DOI
,[28] Interface asymptotics of partial Bergman kernels on S1–symmetric Kaehler manifolds, preprint (2016)
, ,[29] Central limit theorem for toric manifolds, preprint (2018)
, ,[30] Interface asymptotics of partial Bergman kernels around a critical level, preprint (2018)
, ,[31] Pointwise Weyl law for partial bergman kernels, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 589 | DOI
, ,Cité par Sources :