Holomorphic curves in exploded manifolds: virtual fundamental class
Geometry & topology, Tome 23 (2019) no. 4, pp. 1877-1960.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define Gromov–Witten invariants of exploded manifolds. The technical heart of this paper is a construction of a virtual fundamental class [K] of any Kuranishi category K (which is a simplified, more general version of an embedded Kuranishi structure). We also show how to integrate differential forms over [K] to obtain numerical invariants, and push forward such differential forms over suitable maps. We show that such invariants are independent of any choices, and are compatible with pullbacks, products and tropical completion of Kuranishi categories.

In the case of a compact symplectic manifold, this gives an alternative construction of Gromov–Witten invariants, including gravitational descendants.

DOI : 10.2140/gt.2019.23.1877
Classification : 53D45
Keywords: holomorphic curves, virtual fundamental class, exploded manifolds, Gromov–Witten invariants

Parker, Brett 1

1 Monash University, Melbourne, VIC, Australia
@article{GT_2019_23_4_a4,
     author = {Parker, Brett},
     title = {Holomorphic curves in exploded manifolds: virtual fundamental class},
     journal = {Geometry & topology},
     pages = {1877--1960},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     doi = {10.2140/gt.2019.23.1877},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1877/}
}
TY  - JOUR
AU  - Parker, Brett
TI  - Holomorphic curves in exploded manifolds: virtual fundamental class
JO  - Geometry & topology
PY  - 2019
SP  - 1877
EP  - 1960
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1877/
DO  - 10.2140/gt.2019.23.1877
ID  - GT_2019_23_4_a4
ER  - 
%0 Journal Article
%A Parker, Brett
%T Holomorphic curves in exploded manifolds: virtual fundamental class
%J Geometry & topology
%D 2019
%P 1877-1960
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1877/
%R 10.2140/gt.2019.23.1877
%F GT_2019_23_4_a4
Parker, Brett. Holomorphic curves in exploded manifolds: virtual fundamental class. Geometry & topology, Tome 23 (2019) no. 4, pp. 1877-1960. doi : 10.2140/gt.2019.23.1877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1877/

[1] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[2] K Behrend, Cohomology of stacks, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes XIX, Abdus Salam Int. Cent. Theoret. Phys. (2004) 249

[3] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[4] B Chen, A M Li, B L Wang, Virtual neighborhood technique for pseudo-holomorphic spheres, preprint (2013)

[5] Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI

[6] K Cieliebak, I Mundet I Riera, D A Salamon, Equivariant moduli problems, branched manifolds, and the Euler class, Topology 42 (2003) 641 | DOI

[7] B Fantechi, Stacks for everybody, from: "European Congress of Mathematics, I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser (2001) 349 | DOI

[8] K Fukaya, Y G Oh, H Ohta, K Ono, Technical details on Kuranishi structure and virtual fundamental chain, preprint (2012)

[9] K Fukaya, Y G Oh, H Ohta, K Ono, Shrinking good coordinate systems associated to Kuranishi structures, J. Symplectic Geom. 14 (2016) 1295 | DOI

[10] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[11] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[12] D Joyce, D–manifolds and d–orbifolds : a theory of derived diferential geometry, book project (2012)

[13] D Joyce, A new definition of Kuranishi space, preprint (2014)

[14] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[15] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic –manifolds" (editor R J Stern), First Int. Press Lect. Ser. I, International (1998) 47

[16] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1 | DOI

[17] D Mcduff, The virtual moduli cycle, from: "Northern California symplectic geometry seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 73 | DOI

[18] D Mcduff, Groupoids, branched manifolds and multisections, J. Symplectic Geom. 4 (2006) 259 | DOI

[19] D Mcduff, K Wehrheim, Kuranishi atlases with trivial isotropy : the 2013 state of affairs, preprint (2012)

[20] D Mcduff, K Wehrheim, Smooth Kuranishi atlases with isotropy, Geom. Topol. 21 (2017) 2725 | DOI

[21] D Mcduff, K Wehrheim, The topology of Kuranishi atlases, Proc. Lond. Math. Soc. 115 (2017) 221 | DOI

[22] D Mcduff, K Wehrheim, The fundamental class of smooth Kuranishi atlases with trivial isotropy, J. Topol. Anal. 10 (2018) 71 | DOI

[23] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[24] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI

[25] B Parker, Log geometry and exploded manifolds, Abh. Math. Semin. Univ. Hambg. 82 (2012) 43 | DOI

[26] B Parker, Holomorphic curves in exploded manifolds: Kuranishi structure, preprint (2013)

[27] B Parker, Universal tropical structures for curves in exploded manifolds, preprint (2013)

[28] B Parker, Holomorphic curves in exploded manifolds: compactness, Adv. Math. 283 (2015) 377 | DOI

[29] B Parker, Notes on exploded manifolds and a tropical gluing formula for Gromov–Witten invariants, preprint (2016)

[30] B Parker, Tropical gluing formulae for Gromov–Witten invariants, preprint (2017)

[31] B Parker, De Rham theory of exploded manifolds, Geom. Topol. 22 (2018) 1 | DOI

[32] B Parker, Holomorphic curves in exploded manifolds: regularity, Geom. Topol. 23 (2019) 1621 | DOI

[33] Y Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Turkish J. Math. 23 (1999) 161

[34] B Siebert, Gromov–Witten invariants of general symplectic manifolds, preprint (2000)

[35] M F Tehrani, M Mclean, A Zinger, Normal crossings singularities for symplectic topology, preprint (2014)

Cité par Sources :