Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Ghys and Sergiescu proved in the 1980s that Thompson’s group , and hence , admits actions by diffeomorphisms of the circle. They proved that the standard actions of these groups are topologically conjugate to a group of diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha and Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys and Sergiescu, we prove that the groups of Monod and Lodha and Moore are not topologically conjugate to a group of diffeomorphisms.
Furthermore, we show that the group of Lodha and Moore has no nonabelian action on the interval. We also show that many of Monod’s groups , for instance when is such that contains a rational homothety , do not admit a action on the interval. The obstruction comes from the existence of hyperbolic fixed points for actions. With slightly different techniques, we also show that some groups of piecewise affine homeomorphisms of the interval or the circle are not smoothable.
Bonatti, Christian 1 ; Lodha, Yash 2 ; Triestino, Michele 3
@article{GT_2019_23_4_a3, author = {Bonatti, Christian and Lodha, Yash and Triestino, Michele}, title = {Hyperbolicity as an obstruction to smoothability for one-dimensional actions}, journal = {Geometry & topology}, pages = {1841--1876}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, doi = {10.2140/gt.2019.23.1841}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/} }
TY - JOUR AU - Bonatti, Christian AU - Lodha, Yash AU - Triestino, Michele TI - Hyperbolicity as an obstruction to smoothability for one-dimensional actions JO - Geometry & topology PY - 2019 SP - 1841 EP - 1876 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/ DO - 10.2140/gt.2019.23.1841 ID - GT_2019_23_4_a3 ER -
%0 Journal Article %A Bonatti, Christian %A Lodha, Yash %A Triestino, Michele %T Hyperbolicity as an obstruction to smoothability for one-dimensional actions %J Geometry & topology %D 2019 %P 1841-1876 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/ %R 10.2140/gt.2019.23.1841 %F GT_2019_23_4_a3
Bonatti, Christian; Lodha, Yash; Triestino, Michele. Hyperbolicity as an obstruction to smoothability for one-dimensional actions. Geometry & topology, Tome 23 (2019) no. 4, pp. 1841-1876. doi : 10.2140/gt.2019.23.1841. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/
[1] On some planar Baumslag–Solitar actions, preprint (2017)
, , , ,[2] Planar Baumslag–Solitar actions, preprint (2017)
, , ,[3] Rigidity of certain solvable actions on the sphere, Geom. Topol. 16 (2012) 1835 | DOI
,[4] Rigidity of certain solvable actions on the torus, from: "Geometry, dynamics, and foliations 2013" (editors T Asuke, S Matsumoto, Y Mitsumatsu), Adv. Stud. Pure Math. 72, Math. Soc. Japan (2017) 269 | DOI
,[5] Unsmoothable group actions on compact one-manifolds, J. Eur. Math. Soc. (2019) | DOI
, , ,[6] Kazhdan’s property (T), 11, Cambridge Univ. Press (2008) | DOI
, , ,[7] On groups of PL–homeomorphisms of the real line, 215, Amer. Math. Soc. (2016)
, ,[8] Groups of fast homeomorphisms of the interval and the ping-pong argument, J. Comb. Algebra 3 (2019) 1 | DOI
, , , , ,[9] Centralizers of C1–contractions of the half line, Groups Geom. Dyn. 9 (2015) 831 | DOI
, ,[10] Rigidity for C1 actions on the interval arising from hyperbolicity, I : Solvable groups, Math. Z. 286 (2017) 919 | DOI
, , , ,[11] Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985) 485 | DOI
, ,[12] Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999) 199 | DOI
, ,[13] Commutators in groups of piecewise projective homeomorphisms, Adv. Math. 332 (2018) 34 | DOI
, , ,[14] Global rigidity of solvable group actions on S1, Geom. Topol. 8 (2004) 877 | DOI
, ,[15] Dynamical forcing of circular groups, Trans. Amer. Math. Soc. 358 (2006) 3473 | DOI
,[16] Nonsmoothable, locally indicable group actions on the interval, Algebr. Geom. Topol. 8 (2008) 609 | DOI
,[17] Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996) 215
, , ,[18] Cellular automata and groups, from: "Computational complexity: theory, techniques, and applications" (editor R A Meyers), Springer (2012) 336 | DOI
, ,[19] Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007) 199 | DOI
, , ,[20] Groups of homeomorphisms of one-manifolds, I: Actions of nonlinear groups, preprint (2001)
, ,[21] Actions de réseaux sur le cercle, Invent. Math. 137 (1999) 199 | DOI
,[22] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185 | DOI
, ,[23] C1–actions of Baumslag–Solitar groups on S1, Algebr. Geom. Topol. 11 (2011) 1701 | DOI
, ,[24] Actions of Baumslag–Solitar groups on surfaces, Discrete Contin. Dyn. Syst. 33 (2013) 1945 | DOI
, ,[25] Chain groups of homeomorphisms of the interval and the circle, preprint (2016)
, , ,[26] Rotation numbers in Thompson–Stein groups and applications, Geom. Dedicata 131 (2008) 49 | DOI
,[27] A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn. 10 (2016) 177 | DOI
, ,[28] Rigidity of trivial actions of abelian-by-cyclic groups, Proc. Amer. Math. Soc. 138 (2010) 1395 | DOI
,[29] Exotic circles of PL+(S1), Hokkaido Math. J. 24 (1995) 567 | DOI
,[30] Classification of exotic circles of PL+(S1), Hokkaido Math. J. 26 (1997) 685 | DOI
,[31] Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA 110 (2013) 4524 | DOI
,[32] Actions de groupes de Kazhdan sur le cercle, Ann. Sci. École Norm. Sup. 35 (2002) 749 | DOI
,[33] Quelques nouveaux phénomènes de rang 1 pour les groupes de difféomorphismes du cercle, Comment. Math. Helv. 80 (2005) 355 | DOI
,[34] A finitely generated, locally indicable group with no faithful action by C1 diffeomorphisms of the interval, Geom. Topol. 14 (2010) 573 | DOI
,[35] Groups of circle diffeomorphisms, Univ. Chicago Press (2011) | DOI
,[36] C1 actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008) 935 | DOI
,[37] Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992) 477 | DOI
,[38] Regular iteration of real and complex functions, Acta Math. 100 (1958) 203 | DOI
,[39] A generalization of the Reeb stability theorem, Topology 13 (1974) 347 | DOI
,[40] Rigidity of some abelian-by-cyclic solvable group actions on TN, preprint (2019)
, ,[41] Arithmetic groups of higher Q–rank cannot act on 1–manifolds, Proc. Amer. Math. Soc. 122 (1994) 333 | DOI
,Cité par Sources :