Hyperbolicity as an obstruction to smoothability for one-dimensional actions
Geometry & topology, Tome 23 (2019) no. 4, pp. 1841-1876.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Ghys and Sergiescu proved in the 1980s that Thompson’s group T, and hence F, admits actions by C diffeomorphisms of the circle. They proved that the standard actions of these groups are topologically conjugate to a group of C diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha and Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys and Sergiescu, we prove that the groups of Monod and Lodha and Moore are not topologically conjugate to a group of C1 diffeomorphisms.

Furthermore, we show that the group of Lodha and Moore has no nonabelian C1 action on the interval. We also show that many of Monod’s groups H(A), for instance when A is such that PSL(2,A) contains a rational homothety xp qx, do not admit a C1 action on the interval. The obstruction comes from the existence of hyperbolic fixed points for C1 actions. With slightly different techniques, we also show that some groups of piecewise affine homeomorphisms of the interval or the circle are not smoothable.

DOI : 10.2140/gt.2019.23.1841
Classification : 37C85, 57M60, 37D40, 37E05, 43A07
Keywords: group actions on the interval, piecewise-projective homeomorphisms, hyperbolic dynamics

Bonatti, Christian 1 ; Lodha, Yash 2 ; Triestino, Michele 3

1 CNRS, Institut de Mathématiques de Bourgogne (CNRS UMR 5584), Université de Bourgogne, Dijon, France
2 Section de Mathematiques, EPFL, Lausanne, Switzerland
3 Institut de Mathématiques de Bourgogne (CNRS UMR 5584), Université de Bourgogne, Dijon, France
@article{GT_2019_23_4_a3,
     author = {Bonatti, Christian and Lodha, Yash and Triestino, Michele},
     title = {Hyperbolicity as an obstruction to smoothability for one-dimensional actions},
     journal = {Geometry & topology},
     pages = {1841--1876},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     doi = {10.2140/gt.2019.23.1841},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/}
}
TY  - JOUR
AU  - Bonatti, Christian
AU  - Lodha, Yash
AU  - Triestino, Michele
TI  - Hyperbolicity as an obstruction to smoothability for one-dimensional actions
JO  - Geometry & topology
PY  - 2019
SP  - 1841
EP  - 1876
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/
DO  - 10.2140/gt.2019.23.1841
ID  - GT_2019_23_4_a3
ER  - 
%0 Journal Article
%A Bonatti, Christian
%A Lodha, Yash
%A Triestino, Michele
%T Hyperbolicity as an obstruction to smoothability for one-dimensional actions
%J Geometry & topology
%D 2019
%P 1841-1876
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/
%R 10.2140/gt.2019.23.1841
%F GT_2019_23_4_a3
Bonatti, Christian; Lodha, Yash; Triestino, Michele. Hyperbolicity as an obstruction to smoothability for one-dimensional actions. Geometry & topology, Tome 23 (2019) no. 4, pp. 1841-1876. doi : 10.2140/gt.2019.23.1841. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1841/

[1] J Alonso, N Guelman, C Rivas, J Xavier, On some planar Baumslag–Solitar actions, preprint (2017)

[2] J Alonso, C Rivas, J Xavier, Planar Baumslag–Solitar actions, preprint (2017)

[3] M Asaoka, Rigidity of certain solvable actions on the sphere, Geom. Topol. 16 (2012) 1835 | DOI

[4] M Asaoka, Rigidity of certain solvable actions on the torus, from: "Geometry, dynamics, and foliations 2013" (editors T Asuke, S Matsumoto, Y Mitsumatsu), Adv. Stud. Pure Math. 72, Math. Soc. Japan (2017) 269 | DOI

[5] H Baik, S H Kim, S Koberda, Unsmoothable group actions on compact one-manifolds, J. Eur. Math. Soc. (2019) | DOI

[6] B Bekka, P De La Harpe, A Valette, Kazhdan’s property (T), 11, Cambridge Univ. Press (2008) | DOI

[7] R Bieri, R Strebel, On groups of PL–homeomorphisms of the real line, 215, Amer. Math. Soc. (2016)

[8] C Bleak, M Brin, M Kassabov, J T Moore, M C B Zaremsky, Groups of fast homeomorphisms of the interval and the ping-pong argument, J. Comb. Algebra 3 (2019) 1 | DOI

[9] C Bonatti, É Farinelli, Centralizers of C1–contractions of the half line, Groups Geom. Dyn. 9 (2015) 831 | DOI

[10] C Bonatti, I Monteverde, A Navas, C Rivas, Rigidity for C1 actions on the interval arising from hyperbolicity, I : Solvable groups, Math. Z. 286 (2017) 919 | DOI

[11] M G Brin, C C Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985) 485 | DOI

[12] M Burger, N Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999) 199 | DOI

[13] J Burillo, Y Lodha, L Reeves, Commutators in groups of piecewise projective homeomorphisms, Adv. Math. 332 (2018) 34 | DOI

[14] L Burslem, A Wilkinson, Global rigidity of solvable group actions on S1, Geom. Topol. 8 (2004) 877 | DOI

[15] D Calegari, Dynamical forcing of circular groups, Trans. Amer. Math. Soc. 358 (2006) 3473 | DOI

[16] D Calegari, Nonsmoothable, locally indicable group actions on the interval, Algebr. Geom. Topol. 8 (2008) 609 | DOI

[17] J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996) 215

[18] T Ceccherini-Silberstein, M Coornaert, Cellular automata and groups, from: "Computational complexity: theory, techniques, and applications" (editor R A Meyers), Springer (2012) 336 | DOI

[19] B Deroin, V Kleptsyn, A Navas, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007) 199 | DOI

[20] B Farb, J Franks, Groups of homeomorphisms of one-manifolds, I: Actions of nonlinear groups, preprint (2001)

[21] É Ghys, Actions de réseaux sur le cercle, Invent. Math. 137 (1999) 199 | DOI

[22] É Ghys, V Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185 | DOI

[23] N Guelman, I Liousse, C1–actions of Baumslag–Solitar groups on S1, Algebr. Geom. Topol. 11 (2011) 1701 | DOI

[24] N Guelman, I Liousse, Actions of Baumslag–Solitar groups on surfaces, Discrete Contin. Dyn. Syst. 33 (2013) 1945 | DOI

[25] S H Kim, T Koberda, Y Lodha, Chain groups of homeomorphisms of the interval and the circle, preprint (2016)

[26] I Liousse, Rotation numbers in Thompson–Stein groups and applications, Geom. Dedicata 131 (2008) 49 | DOI

[27] Y Lodha, J T Moore, A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn. 10 (2016) 177 | DOI

[28] A E Mccarthy, Rigidity of trivial actions of abelian-by-cyclic groups, Proc. Amer. Math. Soc. 138 (2010) 1395 | DOI

[29] H Minakawa, Exotic circles of PL+(S1), Hokkaido Math. J. 24 (1995) 567 | DOI

[30] H Minakawa, Classification of exotic circles of PL+(S1), Hokkaido Math. J. 26 (1997) 685 | DOI

[31] N Monod, Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA 110 (2013) 4524 | DOI

[32] A Navas, Actions de groupes de Kazhdan sur le cercle, Ann. Sci. École Norm. Sup. 35 (2002) 749 | DOI

[33] A Navas, Quelques nouveaux phénomènes de rang 1 pour les groupes de difféomorphismes du cercle, Comment. Math. Helv. 80 (2005) 355 | DOI

[34] A Navas, A finitely generated, locally indicable group with no faithful action by C1 diffeomorphisms of the interval, Geom. Topol. 14 (2010) 573 | DOI

[35] A Navas, Groups of circle diffeomorphisms, Univ. Chicago Press (2011) | DOI

[36] K Parwani, C1 actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008) 935 | DOI

[37] M Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992) 477 | DOI

[38] G Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958) 203 | DOI

[39] W P Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974) 347 | DOI

[40] A Wilkinson, J Xue, Rigidity of some abelian-by-cyclic solvable group actions on TN, preprint (2019)

[41] D Witte, Arithmetic groups of higher Q–rank cannot act on 1–manifolds, Proc. Amer. Math. Soc. 122 (1994) 333 | DOI

Cité par Sources :