Hausdorff dimension of boundaries of relatively hyperbolic groups
Geometry & topology, Tome 23 (2019) no. 4, pp. 1779-1840.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the Hausdorff dimension of the Floyd and Bowditch boundaries of a relatively hyperbolic group, and show that, for the Floyd metric and shortcut metrics, they are both equal to a constant times the growth rate of the group.

In the proof, we study a special class of conical points called uniformly conical points and establish that, in both boundaries, there exists a sequence of Alhfors regular sets with dimension tending to the Hausdorff dimension and these sets consist of uniformly conical points.

DOI : 10.2140/gt.2019.23.1779
Classification : 20F65, 20F67
Keywords: Floyd boundary, Hausdorff dimension, growth rate, conical points, Ahlfors-regular

Potyagailo, Leonid 1 ; Yang, Wen-yuan 2

1 UFR de Mathématiques, Université de Lille 1, Villeneuve d’Ascq, France
2 Beijing International Center for Mathematical Research & School of Mathematical Sciences, Peking University, Beijing, China
@article{GT_2019_23_4_a2,
     author = {Potyagailo, Leonid and Yang, Wen-yuan},
     title = {Hausdorff dimension of boundaries of relatively hyperbolic groups},
     journal = {Geometry & topology},
     pages = {1779--1840},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     doi = {10.2140/gt.2019.23.1779},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/}
}
TY  - JOUR
AU  - Potyagailo, Leonid
AU  - Yang, Wen-yuan
TI  - Hausdorff dimension of boundaries of relatively hyperbolic groups
JO  - Geometry & topology
PY  - 2019
SP  - 1779
EP  - 1840
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/
DO  - 10.2140/gt.2019.23.1779
ID  - GT_2019_23_4_a2
ER  - 
%0 Journal Article
%A Potyagailo, Leonid
%A Yang, Wen-yuan
%T Hausdorff dimension of boundaries of relatively hyperbolic groups
%J Geometry & topology
%D 2019
%P 1779-1840
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/
%R 10.2140/gt.2019.23.1779
%F GT_2019_23_4_a2
Potyagailo, Leonid; Yang, Wen-yuan. Hausdorff dimension of boundaries of relatively hyperbolic groups. Geometry & topology, Tome 23 (2019) no. 4, pp. 1779-1840. doi : 10.2140/gt.2019.23.1779. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/

[1] C J Bishop, P W Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1 | DOI

[2] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) | DOI

[3] M Burger, S Mozes, CAT(−1)–spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9 (1996) 57 | DOI

[4] J W Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123 | DOI

[5] M Coornaert, Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241 | DOI

[6] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes : les groupes hyperboliques de Gromov, 1441, Springer (1990) | DOI

[7] F Dal’Bo, M Peigné, J C Picaud, A Sambusetti, On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems 31 (2011) 835 | DOI

[8] C Druţu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959 | DOI

[9] K Falconer, Fractal geometry: mathematical foundations and applications, Wiley (1990)

[10] W J Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205 | DOI

[11] D Gaboriau, F Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (2001) 153 | DOI

[12] V Gerasimov, Expansive convergence groups are relatively hyperbolic, Geom. Funct. Anal. 19 (2009) 137 | DOI

[13] V Gerasimov, Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012) 1361 | DOI

[14] V Gerasimov, L Potyagailo, Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc. 15 (2013) 2115 | DOI

[15] V Gerasimov, L Potyagailo, Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity, Groups Geom. Dyn. 9 (2015) 369 | DOI

[16] V Gerasimov, L Potyagailo, Quasiconvexity in relatively hyperbolic groups, J. Reine Angew. Math. 710 (2016) 95 | DOI

[17] V Gerasimov, L Potyagailo, Similar relatively hyperbolic actions of a group, Int. Math. Res. Not. 2016 (2016) 2068 | DOI

[18] É Ghys, P De La Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, 83, Birkhäuser (1990) | DOI

[19] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[20] J Heinonen, Lectures on analysis on metric spaces, Springer (2001) | DOI

[21] G C Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010) 1807 | DOI

[22] A Karlsson, Free subgroups of groups with nontrivial Floyd boundary, Comm. Algebra 31 (2003) 5361 | DOI

[23] J M Mackay, A Sisto, Quasi-hyperbolic planes in relatively hyperbolic groups, preprint (2012)

[24] P Mattila, Geometry of sets and measures in Euclidean spaces : fractals and rectifiability, 44, Cambridge Univ. Press (1995) | DOI

[25] S J Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI

[26] F Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997) 231 | DOI

[27] M J Puls, The first Lp–cohomology of some groups with one end, Arch. Math. (Basel) 88 (2007) 500 | DOI

[28] A Sisto, On metric relative hyperbolicity, preprint (2012)

[29] B O Stratmann, The exponent of convergence of Kleinian groups : on a theorem of Bishop and Jones, from: "Fractal geometry and stochastics, III" (editors C Bandt, U Mosco, M Zähle), Progr. Probab. 57, Birkhäuser (2004) 93 | DOI

[30] B Stratmann, M Urbański, The box-counting dimension for geometrically finite Kleinian groups, Fund. Math. 149 (1996) 83

[31] B Stratmann, S L Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. 71 (1995) 197 | DOI

[32] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI

[33] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259 | DOI

[34] P Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998) 71 | DOI

[35] W Woess, Random walks on infinite graphs and groups, 138, Cambridge Univ. Press (2000) | DOI

[36] W Y Yang, Patterson–Sullivan measures and growth of relatively hyperbolic groups, preprint (2013)

[37] W Y Yang, Growth tightness for groups with contracting elements, Math. Proc. Cambridge Philos. Soc. 157 (2014) 297 | DOI

[38] W Y Yang, Peripheral structures of relatively hyperbolic groups, J. Reine Angew. Math. 689 (2014) 101 | DOI

Cité par Sources :