Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the Hausdorff dimension of the Floyd and Bowditch boundaries of a relatively hyperbolic group, and show that, for the Floyd metric and shortcut metrics, they are both equal to a constant times the growth rate of the group.
In the proof, we study a special class of conical points called uniformly conical points and establish that, in both boundaries, there exists a sequence of Alhfors regular sets with dimension tending to the Hausdorff dimension and these sets consist of uniformly conical points.
Potyagailo, Leonid 1 ; Yang, Wen-yuan 2
@article{GT_2019_23_4_a2, author = {Potyagailo, Leonid and Yang, Wen-yuan}, title = {Hausdorff dimension of boundaries of relatively hyperbolic groups}, journal = {Geometry & topology}, pages = {1779--1840}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, doi = {10.2140/gt.2019.23.1779}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/} }
TY - JOUR AU - Potyagailo, Leonid AU - Yang, Wen-yuan TI - Hausdorff dimension of boundaries of relatively hyperbolic groups JO - Geometry & topology PY - 2019 SP - 1779 EP - 1840 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/ DO - 10.2140/gt.2019.23.1779 ID - GT_2019_23_4_a2 ER -
%0 Journal Article %A Potyagailo, Leonid %A Yang, Wen-yuan %T Hausdorff dimension of boundaries of relatively hyperbolic groups %J Geometry & topology %D 2019 %P 1779-1840 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/ %R 10.2140/gt.2019.23.1779 %F GT_2019_23_4_a2
Potyagailo, Leonid; Yang, Wen-yuan. Hausdorff dimension of boundaries of relatively hyperbolic groups. Geometry & topology, Tome 23 (2019) no. 4, pp. 1779-1840. doi : 10.2140/gt.2019.23.1779. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1779/
[1] Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1 | DOI
, ,[2] Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) | DOI
,[3] CAT(−1)–spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9 (1996) 57 | DOI
, ,[4] The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123 | DOI
,[5] Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241 | DOI
,[6] Géométrie et théorie des groupes : les groupes hyperboliques de Gromov, 1441, Springer (1990) | DOI
, , ,[7] On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems 31 (2011) 835 | DOI
, , , ,[8] Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959 | DOI
, ,[9] Fractal geometry: mathematical foundations and applications, Wiley (1990)
,[10] Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205 | DOI
,[11] Sur les immeubles hyperboliques, Geom. Dedicata 88 (2001) 153 | DOI
, ,[12] Expansive convergence groups are relatively hyperbolic, Geom. Funct. Anal. 19 (2009) 137 | DOI
,[13] Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012) 1361 | DOI
,[14] Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc. 15 (2013) 2115 | DOI
, ,[15] Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity, Groups Geom. Dyn. 9 (2015) 369 | DOI
, ,[16] Quasiconvexity in relatively hyperbolic groups, J. Reine Angew. Math. 710 (2016) 95 | DOI
, ,[17] Similar relatively hyperbolic actions of a group, Int. Math. Res. Not. 2016 (2016) 2068 | DOI
, ,[18] Sur les groupes hyperboliques d’après Mikhael Gromov, 83, Birkhäuser (1990) | DOI
, ,[19] Hyperbolic groups, from: "Essays in group theory" (editor S Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI
,[20] Lectures on analysis on metric spaces, Springer (2001) | DOI
,[21] Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010) 1807 | DOI
,[22] Free subgroups of groups with nontrivial Floyd boundary, Comm. Algebra 31 (2003) 5361 | DOI
,[23] Quasi-hyperbolic planes in relatively hyperbolic groups, preprint (2012)
, ,[24] Geometry of sets and measures in Euclidean spaces : fractals and rectifiability, 44, Cambridge Univ. Press (1995) | DOI
,[25] The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI
,[26] On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997) 231 | DOI
,[27] The first Lp–cohomology of some groups with one end, Arch. Math. (Basel) 88 (2007) 500 | DOI
,[28] On metric relative hyperbolicity, preprint (2012)
,[29] The exponent of convergence of Kleinian groups : on a theorem of Bishop and Jones, from: "Fractal geometry and stochastics, III" (editors C Bandt, U Mosco, M Zähle), Progr. Probab. 57, Birkhäuser (2004) 93 | DOI
,[30] The box-counting dimension for geometrically finite Kleinian groups, Fund. Math. 149 (1996) 83
, ,[31] The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. 71 (1995) 197 | DOI
, ,[32] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI
,[33] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259 | DOI
,[34] Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998) 71 | DOI
,[35] Random walks on infinite graphs and groups, 138, Cambridge Univ. Press (2000) | DOI
,[36] Patterson–Sullivan measures and growth of relatively hyperbolic groups, preprint (2013)
,[37] Growth tightness for groups with contracting elements, Math. Proc. Cambridge Philos. Soc. 157 (2014) 297 | DOI
,[38] Peripheral structures of relatively hyperbolic groups, J. Reine Angew. Math. 689 (2014) 101 | DOI
,Cité par Sources :