Rigidity of convex divisible domains in flag manifolds
Geometry & topology, Tome 23 (2019) no. 1, pp. 171-240.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In contrast to the many examples of convex divisible domains in real projective space, we prove that up to projective isomorphism there is only one convex divisible domain in the Grassmannian of p–planes in 2p when p > 1. Moreover, this convex divisible domain is a model of the symmetric space associated to the simple Lie group  SO(p,p).

DOI : 10.2140/gt.2019.23.171
Classification : 53C24, 57N16, 22E40, 22F50, 52A20, 57S30
Keywords: flag manifolds, geometric structures, convex divisible domains, Hilbert metric, rigidity, Grassmannian

Van Limbeek, Wouter 1 ; Zimmer, Andrew 2

1 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
2 Department of Mathematics, Louisiana State University, Baton Rouge, LA, United States
@article{GT_2019_23_1_a4,
     author = {Van Limbeek, Wouter and Zimmer, Andrew},
     title = {Rigidity of convex divisible domains in flag manifolds},
     journal = {Geometry & topology},
     pages = {171--240},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.171},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.171/}
}
TY  - JOUR
AU  - Van Limbeek, Wouter
AU  - Zimmer, Andrew
TI  - Rigidity of convex divisible domains in flag manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 171
EP  - 240
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.171/
DO  - 10.2140/gt.2019.23.171
ID  - GT_2019_23_1_a4
ER  - 
%0 Journal Article
%A Van Limbeek, Wouter
%A Zimmer, Andrew
%T Rigidity of convex divisible domains in flag manifolds
%J Geometry & topology
%D 2019
%P 171-240
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.171/
%R 10.2140/gt.2019.23.171
%F GT_2019_23_1_a4
Van Limbeek, Wouter; Zimmer, Andrew. Rigidity of convex divisible domains in flag manifolds. Geometry & topology, Tome 23 (2019) no. 1, pp. 171-240. doi : 10.2140/gt.2019.23.171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.171/

[1] R C Alperin, An elementary account of Selberg’s lemma, Enseign. Math. 33 (1987) 269

[2] S A Ballas, J Danciger, G S Lee, Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol. 22 (2018) 1593 | DOI

[3] W Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (1985) 597 | DOI

[4] T J Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980) 556 | DOI

[5] Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149 | DOI

[6] Y Benoist, Convexes divisibles, II, Duke Math. J. 120 (2003) 97 | DOI

[7] Y Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Études Sci. 97 (2003) 181 | DOI

[8] Y Benoist, Convexes divisibles, I, from: "Algebraic groups and arithmetic" (editors S G Dani, G Prasad), Tata Inst. Fund. Res. (2004) 339

[9] Y Benoist, Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI

[10] Y Benoist, A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, Int. (2008) 1

[11] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[12] A Borel, Linear algebraic groups, 126, Springer (1991) | DOI

[13] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[14] K S Brown, Cohomology of groups, 87, Springer (1994) | DOI

[15] K Burns, R Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 35 | DOI

[16] K Burns, R Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 5 | DOI

[17] S Choi, G S Lee, L Marquis, Convex projective generalized Dehn filling, preprint (2016)

[18] S Choi, G S Lee, L Marquis, Deformations of convex real projective manifolds and orbifolds, preprint (2016)

[19] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI

[20] M Crampon, Entropies of strictly convex projective manifolds, J. Mod. Dyn. 3 (2009) 511 | DOI

[21] B Farb, S Weinberger, Isometries, rigidity and universal covers, Ann. of Math. 168 (2008) 915 | DOI

[22] S Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989) 109 | DOI

[23] S Frankel, Applications of affine geometry to geometric function theory in several complex variables, I : Convergent rescalings and intrinsic quasi-isometric structure, from: "Several complex variables and complex geometry, II" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 183 | DOI

[24] W Fulton, J Harris, Representation theory: a first course, 129, Springer (1991) | DOI

[25] A Geng, When are radicals of Lie groups lattice-hereditary ?, New York J. Math. 21 (2015) 321

[26] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791 | DOI

[27] F Guéritaud, O Guichard, F Kassel, A Wienhard, Compactification of certain Clifford–Klein forms of reductive homogeneous spaces, Michigan Math. J. 66 (2017) 49 | DOI

[28] O Guichard, A Wienhard, Convex foliated projective structures and the Hitchin component for PSL4(R), Duke Math. J. 144 (2008) 381 | DOI

[29] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[30] S Helgason, Differential geometry, Lie groups, and symmetric spaces, 80, Academic (1978)

[31] D Johnson, J J Millson, Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48 | DOI

[32] M Kapovich, Convex projective structures on Gromov–Thurston manifolds, Geom. Topol. 11 (2007) 1777 | DOI

[33] M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157 | DOI

[34] A Karlsson, G A Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. 48 (2002) 73

[35] K T Kim, On the automorphism groups of convex domains in Cn, Adv. Geom. 4 (2004) 33 | DOI

[36] K T Kim, S G Krantz, Complex scaling and geometric analysis of several variables, Bull. Korean Math. Soc. 45 (2008) 523 | DOI

[37] S Kobayashi, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 129

[38] J L Koszul, Déformations de connexions localement plates, Ann. Inst. Fourier Grenoble 18 (1968) 103 | DOI

[39] L Marquis, Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI

[40] T Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965) 428 | DOI

[41] A Onishchik, È Vinberg, Lie groups and Lie algebras, III: Structure of Lie groups and Lie algebras, 41, Springer (1994)

[42] G Prasad, R–regular elements in Zariski-dense subgroups, Quart. J. Math. Oxford Ser. 45 (1994) 541 | DOI

[43] J F Quint, Convexes divisibles (d’après Yves Benoist), from: "Séminaire Bourbaki", Astérisque 332, Soc. Mat. de France (2010) 45

[44] M S Raghunathan, Discrete subgroups of Lie groups, 68, Springer (1972)

[45] J Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa 24 (1970) 641

[46] È B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072

[47] È B Vinberg, V G Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967) 347

[48] A Zimmer, Proper quasi-homogeneous domains in flag manifolds and geometric structures, preprint (2015)

Cité par Sources :