The simplicial EHP sequence in 𝔾1–algebraic topology
Geometry & topology, Tome 23 (2019) no. 4, pp. 1691-1777.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a tool for understanding simplicial desuspension in A1–algebraic topology: we show that X → Ω(S1 ∧ X) → Ω(S1 ∧ X ∧ X) is a fiber sequence up to homotopy in 2–localized A1 algebraic topology for X = (S1)m ∧ Gm∧q with m > 1. It follows that there is an EHP spectral sequence

DOI : 10.2140/gt.2019.23.1691
Classification : 14F42, 19G12, 55Q40
Keywords: $A^1$ homotopy, motivic homotopy, simplicial EHP sequence, motivic homotopy of spheres

Wickelgren, Kirsten 1 ; Williams, Ben 2

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
2 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
@article{GT_2019_23_4_a1,
     author = {Wickelgren, Kirsten and Williams, Ben},
     title = {The simplicial {EHP} sequence in {\ensuremath{\mathbb{A}}1{\textendash}algebraic} topology},
     journal = {Geometry & topology},
     pages = {1691--1777},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     doi = {10.2140/gt.2019.23.1691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1691/}
}
TY  - JOUR
AU  - Wickelgren, Kirsten
AU  - Williams, Ben
TI  - The simplicial EHP sequence in 𝔾1–algebraic topology
JO  - Geometry & topology
PY  - 2019
SP  - 1691
EP  - 1777
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1691/
DO  - 10.2140/gt.2019.23.1691
ID  - GT_2019_23_4_a1
ER  - 
%0 Journal Article
%A Wickelgren, Kirsten
%A Williams, Ben
%T The simplicial EHP sequence in 𝔾1–algebraic topology
%J Geometry & topology
%D 2019
%P 1691-1777
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1691/
%R 10.2140/gt.2019.23.1691
%F GT_2019_23_4_a1
Wickelgren, Kirsten; Williams, Ben. The simplicial EHP sequence in 𝔾1–algebraic topology. Geometry & topology, Tome 23 (2019) no. 4, pp. 1691-1777. doi : 10.2140/gt.2019.23.1691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1691/

[1] A Asok, J Fasel, A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J. 163 (2014) 2561 | DOI

[2] A Asok, J Fasel, Splitting vector bundles outside the stable range and A1–homotopy sheaves of punctured affine spaces, J. Amer. Math. Soc. 28 (2015) 1031 | DOI

[3] A Asok, J Fasel, Comparing Euler classes, Q. J. Math. 67 (2016) 603 | DOI

[4] A Asok, K Wickelgren, B Williams, The simplicial suspension sequence in A1–homotopy, Geom. Topol. 21 (2017) 2093 | DOI

[5] C Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 | DOI

[6] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972) | DOI

[7] G Carlsson, R J Milgram, Stable homotopy and iterated loop spaces, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 505 | DOI

[8] C Casacuberta, G Peschke, Localizing with respect to self-maps of the circle, Trans. Amer. Math. Soc. 339 (1993) 117 | DOI

[9] D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615 | DOI

[10] T Ganea, On the homotopy suspension, Comment. Math. Helv. 43 (1968) 225 | DOI

[11] P G Goerss, J F Jardine, Simplicial homotopy theory, 174, BirkhÀuser (1999) | DOI

[12] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[13] A. Hogadi, G. Kulkarni, Gabber’s presentation lemma for finite fields, J. Reine Angew. Math. (2018) | DOI

[14] J Hornbostel, Localizations in motivic homotopy theory, Math. Proc. Cambridge Philos. Soc. 140 (2006) 95 | DOI

[15] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[16] M Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001) 63 | DOI

[17] Y Ihara, Braids, Galois groups, and some arithmetic functions, from: "Proceedings of the International Congress of Mathematicians" (editor I Satake), Math. Soc. Japan (1991) 99

[18] D C Isaksen, Flasque model structures for simplicial presheaves, –Theory 36 (2005) 371 | DOI

[19] I M James, Reduced product spaces, Ann. of Math. 62 (1955) 170 | DOI

[20] I M James, On the suspension triad, Ann. of Math. 63 (1956) 191 | DOI

[21] I M James, The suspension triad of a sphere, Ann. of Math. 63 (1956) 407 | DOI

[22] I M James, On the suspension sequence, Ann. of Math. 65 (1957) 74 | DOI

[23] J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI

[24] J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445

[25] N J Kuhn, The transfer and James–Hopf invariants, Math. Z. 196 (1987) 391 | DOI

[26] N J Kuhn, Stable splittings and the diagonal, from: "Homotopy methods in algebraic topology" (editors J P C Greenlees, R R Bruner, N Kuhn), Contemp. Math. 271, Amer. Math. Soc. (2001) 169 | DOI

[27] T Y Lam, The algebraic theory of quadratic forms, W A Benjamin (1973)

[28] T Y Lam, Introduction to quadratic forms over fields, 67, Amer. Math. Soc. (2005)

[29] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[30] M Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982) 65 | DOI

[31] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic –theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes XV, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[32] F Morel, The stable A1–connectivity theorems, –Theory 35 (2005) 1 | DOI

[33] F Morel, A1–algebraic topology over a field, 2052, Springer (2012) | DOI

[34] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI

[35] E Riehl, Categorical homotopy theory, 24, Cambridge Univ. Press (2014) | DOI

[36] H Toda, Generalized Whitehead products and homotopy groups of spheres, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 3 (1952) 43

[37] H Toda, On the double suspension E2, J. Inst. Polytech. Osaka City Univ. Ser. A. 7 (1956) 103

[38] H Toda, Composition methods in homotopy groups of spheres, 49, Princeton Univ. Press (1962)

[39] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

[40] K Wickelgren, Desuspensions of S1 ∧ (PQ1 −{0,1,∞}), Internat. J. Math. 27 (2016) | DOI

[41] J Wu, Simplicial objects and homotopy groups, from: "Braids" (editors A J Berrick, F R Cohen, E Hanbury, Y L Wong, J Wu), Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 19, World Sci. (2010) 31 | DOI

Cité par Sources :