Holomorphic curves in exploded manifolds: regularity
Geometry & topology, Tome 23 (2019) no. 4, pp. 1621-1690.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The category of exploded manifolds is an extension of the category of smooth manifolds; for exploded manifolds, some adiabatic limits appear as smooth families. This paper studies the ̄ equation on variations of a given family of curves in an exploded manifold. Roughly, we prove that the ̄ equation on variations of an exploded family of curves behaves as nicely as the ̄ equation on variations of a smooth family of smooth curves, even though exploded families of curves allow the development of normal-crossing or log-smooth singularities. The resulting regularity results are foundational to the author’s construction of Gromov–Witten invariants for exploded manifolds.

DOI : 10.2140/gt.2019.23.1621
Classification : 58J99
Keywords: holomorphic curves, exploded manifolds, regularity of dbar equation, gluing analysis

Parker, Brett 1

1 School of Mathematics, Monash University, Melbourne, VIC, Australia
@article{GT_2019_23_4_a0,
     author = {Parker, Brett},
     title = {Holomorphic curves in exploded manifolds: regularity},
     journal = {Geometry & topology},
     pages = {1621--1690},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     doi = {10.2140/gt.2019.23.1621},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1621/}
}
TY  - JOUR
AU  - Parker, Brett
TI  - Holomorphic curves in exploded manifolds: regularity
JO  - Geometry & topology
PY  - 2019
SP  - 1621
EP  - 1690
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1621/
DO  - 10.2140/gt.2019.23.1621
ID  - GT_2019_23_4_a0
ER  - 
%0 Journal Article
%A Parker, Brett
%T Holomorphic curves in exploded manifolds: regularity
%J Geometry & topology
%D 2019
%P 1621-1690
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1621/
%R 10.2140/gt.2019.23.1621
%F GT_2019_23_4_a0
Parker, Brett. Holomorphic curves in exploded manifolds: regularity. Geometry & topology, Tome 23 (2019) no. 4, pp. 1621-1690. doi : 10.2140/gt.2019.23.1621. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1621/

[1] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[2] B Chen, A M Li, B L Wang, Virtual neighborhood technique for pseudo-holomorphic spheres, preprint (2013)

[3] Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI

[4] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[5] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[6] H Hofer, A general Fredholm theory and applications, from: "Current developments in mathematics, 2004" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2006) 1

[7] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, I : A splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841 | DOI

[8] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, II : Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206 | DOI

[9] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, III : Fredholm functors and polyfolds, Geom. Topol. 13 (2009) 2279 | DOI

[10] H Hofer, K Wysocki, E Zehnder, Integration theory on the zero sets of polyfold Fredholm sections, Math. Ann. 346 (2010) 139 | DOI

[11] H Hofer, K Wysocki, E Zehnder, Sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 | DOI

[12] E N Ionel, GW invariants relative to normal crossing divisors, Adv. Math. 281 (2015) 40 | DOI

[13] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic –manifolds" (editor R J Stern), First Int. Press Lect. Ser. 1, International (1998) 47

[14] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[15] R B Lockhart, R C Mcowen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985) 409

[16] D Mcduff, The virtual moduli cycle, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 73 | DOI

[17] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI

[18] B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 | DOI

[19] B Parker, Log geometry and exploded manifolds, Abh. Math. Semin. Univ. Hambg. 82 (2012) 43 | DOI

[20] B Parker, Holomorphic curves in exploded manifolds: Kuranishi structure, preprint (2013)

[21] B Parker, Universal tropical structures for curves in exploded manifolds, preprint (2013)

[22] B Parker, On the value of thinking tropically to understand Ionel’s GW invariants relative normal crossing divisors, preprint (2014)

[23] B Parker, Tropical enumeration of curves in blowups of the projective plane, preprint (2014)

[24] B Parker, Gluing formula for Gromov–Witten invariants in a triple product, preprint (2015)

[25] B Parker, Holomorphic curves in exploded manifolds: compactness, Adv. Math. 283 (2015) 377 | DOI

[26] B Parker, Notes on exploded manifolds and a tropical gluing formula for Gromov–Witten invariants, preprint (2016)

[27] B Parker, Three dimensional tropical correspondence formula, Comm. Math. Phys. 353 (2017) 791 | DOI

[28] B Parker, Tropical gluing formulae for Gromov–Witten invariants, preprint (2017)

[29] B Parker, De Rham theory of exploded manifolds, Geom. Topol. 22 (2018) 1

[30] B Parker, Holomorphic curves in exploded manifolds: virtual fundamental class, Geom. Topol. 23 (2019) 1877 | DOI

[31] Y Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Turkish J. Math. 23 (1999) 161

Cité par Sources :