Infinite loop spaces and positive scalar curvature in the presence of a fundamental group
Geometry & topology, Tome 23 (2019) no. 3, pp. 1549-1610.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is a continuation of our previous work with Botvinnik on the nontriviality of the secondary index invariant on spaces of metrics of positive scalar curvature, in which we take the fundamental group of the manifolds into account. We show that the secondary index invariant associated to the vanishing of the Rosenberg index can be highly nontrivial for positive scalar curvature Spin manifolds with torsionfree fundamental groups which satisfy the Baum–Connes conjecture. This gives the first example of the nontriviality of the group C–algebra-valued secondary index invariant on higher homotopy groups. As an application, we produce a compact Spin 6–manifold whose space of positive scalar curvature metrics has each rational homotopy group infinite-dimensional.

At a more technical level, we introduce the notion of “stable metrics” and prove a basic existence theorem for them, which generalises the Gromov–Lawson surgery technique, and we also give a method for rounding corners of manifolds with positive scalar curvature metrics.

DOI : 10.2140/gt.2019.23.1549
Classification : 19K35, 19K56, 53C27, 58J22
Keywords: positive scalar curvature, Gromov–Lawson surgery, cobordism categories, diffeomorphism groups, Madsen–Weiss-type theorems, secondary index invariant, Rosenberg index, Baum–Connes conjecture

Ebert, Johannes 1 ; Randal-Williams, Oscar 2

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
2 Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{GT_2019_23_3_a7,
     author = {Ebert, Johannes and Randal-Williams, Oscar},
     title = {Infinite loop spaces and positive scalar curvature in the presence of a fundamental group},
     journal = {Geometry & topology},
     pages = {1549--1610},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     doi = {10.2140/gt.2019.23.1549},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1549/}
}
TY  - JOUR
AU  - Ebert, Johannes
AU  - Randal-Williams, Oscar
TI  - Infinite loop spaces and positive scalar curvature in the presence of a fundamental group
JO  - Geometry & topology
PY  - 2019
SP  - 1549
EP  - 1610
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1549/
DO  - 10.2140/gt.2019.23.1549
ID  - GT_2019_23_3_a7
ER  - 
%0 Journal Article
%A Ebert, Johannes
%A Randal-Williams, Oscar
%T Infinite loop spaces and positive scalar curvature in the presence of a fundamental group
%J Geometry & topology
%D 2019
%P 1549-1610
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1549/
%R 10.2140/gt.2019.23.1549
%F GT_2019_23_3_a7
Ebert, Johannes; Randal-Williams, Oscar. Infinite loop spaces and positive scalar curvature in the presence of a fundamental group. Geometry & topology, Tome 23 (2019) no. 3, pp. 1549-1610. doi : 10.2140/gt.2019.23.1549. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1549/

[1] D W Anderson, E H Brown Jr., F P Peterson, The structure of the Spin cobordism ring, Ann. of Math. 86 (1967) 271 | DOI

[2] N Bárcenas, R Zeidler, Positive scalar curvature and low-degree group homology, Ann. K–Theory 3 (2018) 565 | DOI

[3] P Baum, M Karoubi, On the Baum–Connes conjecture in the real case, Q. J. Math. 55 (2004) 231 | DOI

[4] R Bieri, Homological dimension of discrete groups, Department of Pure Mathematics, Queen Mary College (1981)

[5] B Blackadar, K–theory for operator algebras, 5, Cambridge Univ. Press (1998) | DOI

[6] B Botvinnik, J Ebert, O Randal-Williams, Infinite loop spaces and positive scalar curvature, Invent. Math. 209 (2017) 749 | DOI

[7] B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI

[8] L Buggisch, The spectral flow theorem for families of twisted Dirac operators, PhD thesis, Westfälische Wilhelms-Universität Münster (2019)

[9] U Bunke, A K–theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995) 241 | DOI

[10] V Chernysh, On the homotopy type of the space R+(M), preprint (2004)

[11] V Chernysh, A quasifibration of spaces of positive scalar curvature metrics, Proc. Amer. Math. Soc. 134 (2006) 2771 | DOI

[12] A Connes, G Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984) 1139 | DOI

[13] J Dixmier, A Douady, Champs continus d’espaces hilbertiens et de C∗–algèbres, Bull. Soc. Math. France 91 (1963) 227

[14] J Ebert, Elliptic regularity for Dirac operators on families of noncompact manifolds, preprint (2016)

[15] J Ebert, The two definitions of the index difference, Trans. Amer. Math. Soc. 369 (2017) 7469 | DOI

[16] J Ebert, Index theory in spaces of manifolds, Math. Ann. (2019) | DOI

[17] J. Ebert, O. Randal-Williams, The positive scalar curvature cobordism category, preprint (2019)

[18] S Echterhoff, Bivariant KK–theory and the Baum–Connes conjecture, from: "–theory for group –algebras and semigroup –algebras" (editors J Cuntz, S Echterhoff, X Li, G Yu), Oberwolfach Seminars 47, Springer (2017) 81 | DOI

[19] S Führing, A smooth variation of Baas–Sullivan theory and positive scalar curvature, Math. Z. 274 (2013) 1029 | DOI

[20] P Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987) 179 | DOI

[21] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[22] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, II, Ann. of Math. 186 (2017) 127 | DOI

[23] S Gallot, D Hulin, J Lafontaine, Riemannian geometry, Springer (2004) | DOI

[24] M Gromov, H B Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 83 | DOI

[25] M Gromov, H B Lawson Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 | DOI

[26] M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI

[27] J C Hausmann, D Husemoller, Acyclic maps, Enseign. Math. 25 (1979) 53

[28] D W Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969) 759 | DOI

[29] N Higson, J Roe, Analytic K–homology, Oxford Univ. Press (2000)

[30] N Higson, J Roe, K–homology, assembly and rigidity theorems for relative eta invariants, Pure Appl. Math. Q. 6 (2010) 555 | DOI

[31] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[32] M Joachim, S Stolz, An enrichment of KK–theory over the category of symmetric spectra, Münster J. Math. 2 (2009) 143

[33] D D Joyce, Compact 8–manifolds with holonomy Spin(7), Invent. Math. 123 (1996) 507 | DOI

[34] M Karoubi, A descent theorem in topological K–theory, –Theory 24 (2001) 109 | DOI

[35] G G Kasparov, The operator K–functor and extensions of C∗–algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 571

[36] M A Kervaire, Le théorème de Barden–Mazur–Stallings, Comment. Math. Helv. 40 (1965) 31 | DOI

[37] M Land, The analytical assembly map and index theory, J. Noncommut. Geom. 9 (2015) 603 | DOI

[38] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989)

[39] W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in K– and L–theory, from: "Handbook of –theory" (editors E M Friedlander, D R Grayson), Springer (2005) 703 | DOI

[40] M Matthey, The Baum–Connes assembly map, delocalization and the Chern character, Adv. Math. 183 (2004) 316 | DOI

[41] N Perlmutter, Parametrized Morse theory and positive scalar curvature, preprint (2017)

[42] A Phillips, Submersions of open manifolds, Topology 6 (1967) 171 | DOI

[43] P Piazza, T Schick, Groups with torsion, bordism and rho invariants, Pacific J. Math. 232 (2007) 355 | DOI

[44] J Rosenberg, C∗–algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 197 | DOI

[45] T Schick, Real versus complex K–theory using Kasparov’s bivariant KK–theory, Algebr. Geom. Topol. 4 (2004) 333 | DOI

[46] T Schick, L2–index theorems, KK–theory, and connections, New York J. Math. 11 (2005) 387

[47] S Stolz, Concordance classes of positive scalar curvature metrics, unpublished manuscript (1998)

[48] C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. 81 (1965) 56 | DOI

[49] C T C Wall, Geometrical connectivity, I, J. London Math. Soc. 3 (1971) 597 | DOI

[50] M Walsh, Metrics of positive scalar curvature and generalised Morse functions, I, 983, Amer. Math. Soc. (2011) | DOI

[51] M Walsh, Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics, Proc. Amer. Math. Soc. 141 (2013) 2475 | DOI

[52] M Walsh, The space of positive scalar curvature metrics on a manifold with boundary, preprint (2014)

[53] S Weinberger, G Yu, Finite part of operator K–theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol. 19 (2015) 2767 | DOI

[54] Z Xie, G Yu, R Zeidler, On the range of the relative higher index and the higher rho-invariant for positive scalar curvature, preprint (2017)

Cité par Sources :