A deformation of instanton homology for webs
Geometry & topology, Tome 23 (2019) no. 3, pp. 1491-1547 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

A deformation of the authors’ instanton homology for webs is constructed by introducing a local system of coefficients. In the case that the web is planar, the rank of the deformed instanton homology is equal to the number of Tait colorings of the web.

DOI : 10.2140/gt.2019.23.1491
Classification : 57R58, 05C15
Keywords: Floer homology, instanton, spatial graph, web, foam, Tait colorings

Kronheimer, Peter 1 ; Mrowka, Tomasz 2

1 Department of Mathematics, Harvard University, Cambridge, MA, United States
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{10_2140_gt_2019_23_1491,
     author = {Kronheimer, Peter and Mrowka, Tomasz},
     title = {A deformation of instanton homology for webs},
     journal = {Geometry & topology},
     pages = {1491--1547},
     year = {2019},
     volume = {23},
     number = {3},
     doi = {10.2140/gt.2019.23.1491},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1491/}
}
TY  - JOUR
AU  - Kronheimer, Peter
AU  - Mrowka, Tomasz
TI  - A deformation of instanton homology for webs
JO  - Geometry & topology
PY  - 2019
SP  - 1491
EP  - 1547
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1491/
DO  - 10.2140/gt.2019.23.1491
ID  - 10_2140_gt_2019_23_1491
ER  - 
%0 Journal Article
%A Kronheimer, Peter
%A Mrowka, Tomasz
%T A deformation of instanton homology for webs
%J Geometry & topology
%D 2019
%P 1491-1547
%V 23
%N 3
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1491/
%R 10.2140/gt.2019.23.1491
%F 10_2140_gt_2019_23_1491
Kronheimer, Peter; Mrowka, Tomasz. A deformation of instanton homology for webs. Geometry & topology, Tome 23 (2019) no. 3, pp. 1491-1547. doi: 10.2140/gt.2019.23.1491

[1] K Appel, W Haken, Every planar map is four colorable, 98, Amer. Math. Soc. (1989) | DOI

[2] M F Atiyah, I M Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 2597 | DOI

[3] P J Braam, S K Donaldson, Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI

[4] S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 | DOI

[5] S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI

[6] D Eisenbud, Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI

[7] A Floer, Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, 1" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97 | DOI

[8] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[9] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI

[10] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[11] P B Kronheimer, T S Mrowka, Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI

[12] P B Kronheimer, T S Mrowka, Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI

[13] P B Kronheimer, T S Mrowka, Exact triangles for SO(3) instanton homology of webs, J. Topol. 9 (2016) 774 | DOI

[14] P B Kronheimer, T S Mrowka, Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. 21 (2019) 55 | DOI

[15] J Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891) 193 | DOI

[16] Y Xie, On the framed singular instanton Floer Homology from higher rank bundles, PhD thesis, Harvard University (2016)

Cité par Sources :