A deformation of the authors’ instanton homology for webs is constructed by introducing a local system of coefficients. In the case that the web is planar, the rank of the deformed instanton homology is equal to the number of Tait colorings of the web.
Keywords: Floer homology, instanton, spatial graph, web, foam, Tait colorings
Kronheimer, Peter 1 ; Mrowka, Tomasz 2
@article{10_2140_gt_2019_23_1491,
author = {Kronheimer, Peter and Mrowka, Tomasz},
title = {A deformation of instanton homology for webs},
journal = {Geometry & topology},
pages = {1491--1547},
year = {2019},
volume = {23},
number = {3},
doi = {10.2140/gt.2019.23.1491},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1491/}
}
TY - JOUR AU - Kronheimer, Peter AU - Mrowka, Tomasz TI - A deformation of instanton homology for webs JO - Geometry & topology PY - 2019 SP - 1491 EP - 1547 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1491/ DO - 10.2140/gt.2019.23.1491 ID - 10_2140_gt_2019_23_1491 ER -
Kronheimer, Peter; Mrowka, Tomasz. A deformation of instanton homology for webs. Geometry & topology, Tome 23 (2019) no. 3, pp. 1491-1547. doi: 10.2140/gt.2019.23.1491
[1] , , Every planar map is four colorable, 98, Amer. Math. Soc. (1989) | DOI
[2] , , Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 2597 | DOI
[3] , , Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI
[4] , Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 | DOI
[5] , Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI
[6] , Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI
[7] , Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, 1" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97 | DOI
[8] , , Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
[9] , , Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI
[10] , , Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI
[11] , , Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI
[12] , , Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI
[13] , , Exact triangles for SO(3) instanton homology of webs, J. Topol. 9 (2016) 774 | DOI
[14] , , Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. 21 (2019) 55 | DOI
[15] , Die Theorie der regulären graphs, Acta Math. 15 (1891) 193 | DOI
[16] , On the framed singular instanton Floer Homology from higher rank bundles, PhD thesis, Harvard University (2016)
Cité par Sources :