Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove for the automorphism group of an arbitrary parabolic geometry that the – and –topologies coincide, and the group admits the structure of a Lie group in this topology. We further show that this automorphism group is closed in the homeomorphism group of the underlying manifold.
Frances, Charles 1 ; Melnick, Karin 2
@article{GT_2019_23_1_a3, author = {Frances, Charles and Melnick, Karin}, title = {Topology of automorphism groups of parabolic geometries}, journal = {Geometry & topology}, pages = {135--169}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, doi = {10.2140/gt.2019.23.135}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/} }
TY - JOUR AU - Frances, Charles AU - Melnick, Karin TI - Topology of automorphism groups of parabolic geometries JO - Geometry & topology PY - 2019 SP - 135 EP - 169 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/ DO - 10.2140/gt.2019.23.135 ID - GT_2019_23_1_a3 ER -
Frances, Charles; Melnick, Karin. Topology of automorphism groups of parabolic geometries. Geometry & topology, Tome 23 (2019) no. 1, pp. 135-169. doi : 10.2140/gt.2019.23.135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/
[1] The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996) 277 | DOI
,[2] Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. 40 (2007) 741 | DOI
,[3] Dégénerescence locale des transformations conformes pseudo-riemanniennes, Ann. Inst. Fourier Grenoble 62 (2012) 1627 | DOI
,[4] Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J. 153 (2010) 511 | DOI
, ,[5] Rigid transformations groups, from: "Géométrie différentielle" (editors D Bernard, Y Choquet-Bruhat), Travaux en Cours 33, Hermann (1988) 65
,[6] Basic theory of algebraic groups and Lie algebras, 75, Springer (1981) | DOI
,[7] Lie groups beyond an introduction, 140, Birkhäuser (1996) | DOI
,[8] Transformation groups in differential geometry, 70, Springer (1972) | DOI
,[9] Geometrical interpretations of scalar curvature and regularity of conformal homeomorphisms, from: "Differential geometry and relativity" (editors M Cahen, M Flato), Mathematical Phys. and Appl. Math. 3, Reidel (1976) 91 | DOI
,[10] A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. 57 (2011) 57 | DOI
,[11] The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939) 400 | DOI
, ,[12] On the group of affine transformations of an affinely connected manifold, Proc. Amer. Math. Soc. 4 (1953) 816 | DOI
,[13] A global formulation of the Lie theory of transformation groups, 22, Amer. Math. Soc. (1957)
,[14] On the automorphism group of a G–structure, Comment. Math. Helv. 39 (1964) 189 | DOI
,[15] On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464 | DOI
,[16] Differential geometry : Cartan’s generalization of Klein’s Erlangen program, 166, Springer (1997)
,[17] Lectures on differential geometry, Prentice Hall (1964)
,[18] On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979) 23 | DOI
,[19] Parabolic geometries, I : Background and general theory, 154, Amer. Math. Soc. (2009) | DOI
, ,Cité par Sources :