Topology of automorphism groups of parabolic geometries
Geometry & topology, Tome 23 (2019) no. 1, pp. 135-169.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove for the automorphism group of an arbitrary parabolic geometry that the C0– and C–topologies coincide, and the group admits the structure of a Lie group in this topology. We further show that this automorphism group is closed in the homeomorphism group of the underlying manifold.

DOI : 10.2140/gt.2019.23.135
Classification : 53C10, 57S05, 57S20
Keywords: transformation groups, parabolic geometries, conformal geometry, projective geometry, CR geometry

Frances, Charles 1 ; Melnick, Karin 2

1 Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France
2 Department of Mathematics, University of Maryland, College Park, MD, United States
@article{GT_2019_23_1_a3,
     author = {Frances, Charles and Melnick, Karin},
     title = {Topology of automorphism groups of parabolic geometries},
     journal = {Geometry & topology},
     pages = {135--169},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.135},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/}
}
TY  - JOUR
AU  - Frances, Charles
AU  - Melnick, Karin
TI  - Topology of automorphism groups of parabolic geometries
JO  - Geometry & topology
PY  - 2019
SP  - 135
EP  - 169
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/
DO  - 10.2140/gt.2019.23.135
ID  - GT_2019_23_1_a3
ER  - 
%0 Journal Article
%A Frances, Charles
%A Melnick, Karin
%T Topology of automorphism groups of parabolic geometries
%J Geometry & topology
%D 2019
%P 135-169
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/
%R 10.2140/gt.2019.23.135
%F GT_2019_23_1_a3
Frances, Charles; Melnick, Karin. Topology of automorphism groups of parabolic geometries. Geometry & topology, Tome 23 (2019) no. 1, pp. 135-169. doi : 10.2140/gt.2019.23.135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.135/

[1] J Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996) 277 | DOI

[2] C Frances, Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. 40 (2007) 741 | DOI

[3] C Frances, Dégénerescence locale des transformations conformes pseudo-riemanniennes, Ann. Inst. Fourier Grenoble 62 (2012) 1627 | DOI

[4] C Frances, K Melnick, Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J. 153 (2010) 511 | DOI

[5] M Gromov, Rigid transformations groups, from: "Géométrie différentielle" (editors D Bernard, Y Choquet-Bruhat), Travaux en Cours 33, Hermann (1988) 65

[6] G P Hochschild, Basic theory of algebraic groups and Lie algebras, 75, Springer (1981) | DOI

[7] A W Knapp, Lie groups beyond an introduction, 140, Birkhäuser (1996) | DOI

[8] S Kobayashi, Transformation groups in differential geometry, 70, Springer (1972) | DOI

[9] J Lelong-Ferrand, Geometrical interpretations of scalar curvature and regularity of conformal homeomorphisms, from: "Differential geometry and relativity" (editors M Cahen, M Flato), Mathematical Phys. and Appl. Math. 3, Reidel (1976) 91 | DOI

[10] K Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. 57 (2011) 57 | DOI

[11] S B Myers, N E Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939) 400 | DOI

[12] K Nomizu, On the group of affine transformations of an affinely connected manifold, Proc. Amer. Math. Soc. 4 (1953) 816 | DOI

[13] R S Palais, A global formulation of the Lie theory of transformation groups, 22, Amer. Math. Soc. (1957)

[14] E A Ruh, On the automorphism group of a G–structure, Comment. Math. Helv. 39 (1964) 189 | DOI

[15] R Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464 | DOI

[16] R W Sharpe, Differential geometry : Cartan’s generalization of Klein’s Erlangen program, 166, Springer (1997)

[17] S Sternberg, Lectures on differential geometry, Prentice Hall (1964)

[18] N Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979) 23 | DOI

[19] A Čap, J Slovák, Parabolic geometries, I : Background and general theory, 154, Amer. Math. Soc. (2009) | DOI

Cité par Sources :