Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe the space of maximal components of the character variety of surface group representations into and .
For every real rank Lie group of Hermitian type, we construct a mapping class group invariant complex structure on the maximal components. For the groups and , we give a mapping class group invariant parametrization of each maximal component as an explicit holomorphic fiber bundle over Teichmüller space. Special attention is put on the connected components which are singular: we give a precise local description of the singularities and their geometric interpretation. We also describe the quotient of the maximal components of and by the action of the mapping class group as a holomorphic submersion over the moduli space of curves.
These results are proven in two steps: first we use Higgs bundles to give a nonmapping class group equivariant parametrization, then we prove an analog of Labourie’s conjecture for maximal –representations.
Alessandrini, Daniele 1 ; Collier, Brian 2
@article{GT_2019_23_3_a3, author = {Alessandrini, Daniele and Collier, Brian}, title = {The geometry of maximal components of the {PSp(4,} {\ensuremath{\mathbb{R}})} character variety}, journal = {Geometry & topology}, pages = {1251--1337}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2019}, doi = {10.2140/gt.2019.23.1251}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/} }
TY - JOUR AU - Alessandrini, Daniele AU - Collier, Brian TI - The geometry of maximal components of the PSp(4, ℝ) character variety JO - Geometry & topology PY - 2019 SP - 1251 EP - 1337 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/ DO - 10.2140/gt.2019.23.1251 ID - GT_2019_23_3_a3 ER -
%0 Journal Article %A Alessandrini, Daniele %A Collier, Brian %T The geometry of maximal components of the PSp(4, ℝ) character variety %J Geometry & topology %D 2019 %P 1251-1337 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/ %R 10.2140/gt.2019.23.1251 %F GT_2019_23_3_a3
Alessandrini, Daniele; Collier, Brian. The geometry of maximal components of the PSp(4, ℝ) character variety. Geometry & topology, Tome 23 (2019) no. 3, pp. 1251-1337. doi : 10.2140/gt.2019.23.1251. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/
[1] A commentary on Teichmüller’s paper “Veränderliche Riemannsche Flächen”, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 805 | DOI
, , , ,[2] Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. 4 (1971) 47 | DOI
,[3] Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006) 185 | DOI
, , ,[4] Deformations of maximal representations in Sp(4, R), Q. J. Math. 63 (2012) 795 | DOI
, , ,[5] Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI
, , , ,[6] Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010) 517 | DOI
, , ,[7] Higher Teichmüller spaces : from SL(2, R) to other Lie groups, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 539 | DOI
, , ,[8] Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, 1424, Springer (1990) | DOI
, ,[9] Maximal Sp(4, R) surface group representations, minimal immersions and cyclic surfaces, Geom. Dedicata 180 (2016) 241 | DOI
,[10] The geometry of maximal representations of surface groups into SO(2,n), preprint (2017)
, , ,[11] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361 | DOI
,[12] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75 | DOI
, ,[13] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI
,[14] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[15] The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, preprint (2009)
, , ,[16] Higgs bundles and surface group representations in the real symplectic group, J. Topol. 6 (2013) 64 | DOI
, , ,[17] The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 | DOI
,[18] Topological components of spaces of representations, Invent. Math. 93 (1988) 557 | DOI
,[19] Mapping class group dynamics on surface group representations, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 189 | DOI
,[20] Components of spaces of representations and stable triples, Topology 40 (2001) 823 | DOI
,[21] Rank two quadratic pairs and surface group representations, Geom. Dedicata 161 (2012) 335 | DOI
, ,[22] Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957) 119 | DOI
,[23] Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI
, , , ,[24] Topological invariants of Anosov representations, J. Topol. 3 (2010) 578 | DOI
, ,[25] Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI
, ,[26] Tight maps and holomorphicity, Transform. Groups 19 (2014) 999 | DOI
,[27] Stability of the homology of the moduli spaces of Riemann surfaces with spin structure, Math. Ann. 287 (1990) 323 | DOI
,[28] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI
,[29] Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI
,[30] Counting minimal surfaces in quasi-Fuchsian three-manifolds, Trans. Amer. Math. Soc. 367 (2015) 6063 | DOI
, ,[31] Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157 | DOI
, , ,[32] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[33] Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007) 1057 | DOI
,[34] Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437 | DOI
,[35] Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. 185 (2017) 1 | DOI
,[36] On quasi algebraic closure, Ann. of Math. 55 (1952) 373 | DOI
,[37] Affine spheres and convex RPn–manifolds, Amer. J. Math. 123 (2001) 255 | DOI
,[38] Symmetric products of an algebraic curve, Topology 1 (1962) 319 | DOI
,[39] Characteristic classes, 76, Princeton Univ. Press (1974)
, ,[40] Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. 4 (1971) 181 | DOI
,[41] Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965) 540 | DOI
, ,[42] Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 129 | DOI
,[43] Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982) 639 | DOI
, ,[44] Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 15 | DOI
,[45] The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179
,[46] Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 | DOI
, ,[47] Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 | DOI
,[48] Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47 | DOI
,[49] Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI
,[50] The action of the mapping class group on maximal representations, Geom. Dedicata 120 (2006) 179 | DOI
,[51] The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449 | DOI
,Cité par Sources :