The geometry of maximal components of the PSp(4, ℝ) character variety
Geometry & topology, Tome 23 (2019) no. 3, pp. 1251-1337.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe the space of maximal components of the character variety of surface group representations into PSp(4, ) and Sp(4, ).

For every real rank 2 Lie group of Hermitian type, we construct a mapping class group invariant complex structure on the maximal components. For the groups PSp(4, ) and Sp(4, ), we give a mapping class group invariant parametrization of each maximal component as an explicit holomorphic fiber bundle over Teichmüller space. Special attention is put on the connected components which are singular: we give a precise local description of the singularities and their geometric interpretation. We also describe the quotient of the maximal components of PSp(4, ) and Sp(4, ) by the action of the mapping class group as a holomorphic submersion over the moduli space of curves.

These results are proven in two steps: first we use Higgs bundles to give a nonmapping class group equivariant parametrization, then we prove an analog of Labourie’s conjecture for maximal PSp(4, )–representations.

DOI : 10.2140/gt.2019.23.1251
Classification : 22E40, 53C07, 14H60, 20H10
Keywords: character varieties, mapping class group, Higgs bundles, maximal representations

Alessandrini, Daniele 1 ; Collier, Brian 2

1 Mathematisches Institut, Universitaet Heidelberg, Heidelberg, Germany
2 Department of Mathematics, University of Maryland, College Park, MD, United States
@article{GT_2019_23_3_a3,
     author = {Alessandrini, Daniele and Collier, Brian},
     title = {The geometry of maximal components of the {PSp(4,} {\ensuremath{\mathbb{R}})} character variety},
     journal = {Geometry & topology},
     pages = {1251--1337},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     doi = {10.2140/gt.2019.23.1251},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/}
}
TY  - JOUR
AU  - Alessandrini, Daniele
AU  - Collier, Brian
TI  - The geometry of maximal components of the PSp(4, ℝ) character variety
JO  - Geometry & topology
PY  - 2019
SP  - 1251
EP  - 1337
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/
DO  - 10.2140/gt.2019.23.1251
ID  - GT_2019_23_3_a3
ER  - 
%0 Journal Article
%A Alessandrini, Daniele
%A Collier, Brian
%T The geometry of maximal components of the PSp(4, ℝ) character variety
%J Geometry & topology
%D 2019
%P 1251-1337
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/
%R 10.2140/gt.2019.23.1251
%F GT_2019_23_3_a3
Alessandrini, Daniele; Collier, Brian. The geometry of maximal components of the PSp(4, ℝ) character variety. Geometry & topology, Tome 23 (2019) no. 3, pp. 1251-1337. doi : 10.2140/gt.2019.23.1251. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1251/

[1] A A’Campo-Neuen, N A’Campo, L Ji, A Papadopoulos, A commentary on Teichmüller’s paper “Veränderliche Riemannsche Flächen”, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 805 | DOI

[2] M F Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. 4 (1971) 47 | DOI

[3] S B Bradlow, O García-Prada, P B Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006) 185 | DOI

[4] S B Bradlow, O García-Prada, P B Gothen, Deformations of maximal representations in Sp(4, R), Q. J. Math. 63 (2012) 795 | DOI

[5] M Burger, A Iozzi, F Labourie, A Wienhard, Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI

[6] M Burger, A Iozzi, A Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010) 517 | DOI

[7] M Burger, A Iozzi, A Wienhard, Higher Teichmüller spaces : from SL(2, R) to other Lie groups, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 539 | DOI

[8] F E Burstall, J H Rawnsley, Twistor theory for Riemannian symmetric spaces : with applications to harmonic maps of Riemann surfaces, 1424, Springer (1990) | DOI

[9] B Collier, Maximal Sp(4, R) surface group representations, minimal immersions and cyclic surfaces, Geom. Dedicata 180 (2016) 241 | DOI

[10] B Collier, N Tholozan, J Toulisse, The geometry of maximal representations of surface groups into SO(2,n), preprint (2017)

[11] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361 | DOI

[12] P Deligne, D Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75 | DOI

[13] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI

[14] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[15] O García-Prada, P B Gothen, I Mundet I Riera, The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, preprint (2009)

[16] O García-Prada, P B Gothen, I Mundet I Riera, Higgs bundles and surface group representations in the real symplectic group, J. Topol. 6 (2013) 64 | DOI

[17] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 | DOI

[18] W M Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988) 557 | DOI

[19] W M Goldman, Mapping class group dynamics on surface group representations, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 189 | DOI

[20] P B Gothen, Components of spaces of representations and stable triples, Topology 40 (2001) 823 | DOI

[21] P B Gothen, A G Oliveira, Rank two quadratic pairs and surface group representations, Geom. Dedicata 161 (2012) 335 | DOI

[22] A Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957) 119 | DOI

[23] F Guéritaud, O Guichard, F Kassel, A Wienhard, Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI

[24] O Guichard, A Wienhard, Topological invariants of Anosov representations, J. Topol. 3 (2010) 578 | DOI

[25] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[26] O Hamlet, Tight maps and holomorphicity, Transform. Groups 19 (2014) 999 | DOI

[27] J L Harer, Stability of the homology of the moduli spaces of Riemann surfaces with spin structure, Math. Ann. 287 (1990) 323 | DOI

[28] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI

[29] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI

[30] Z Huang, B Wang, Counting minimal surfaces in quasi-Fuchsian three-manifolds, Trans. Amer. Math. Soc. 367 (2015) 6063 | DOI

[31] M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157 | DOI

[32] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[33] F Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007) 1057 | DOI

[34] F Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437 | DOI

[35] F Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. 185 (2017) 1 | DOI

[36] S Lang, On quasi algebraic closure, Ann. of Math. 55 (1952) 373 | DOI

[37] J C Loftin, Affine spheres and convex RPn–manifolds, Amer. J. Math. 123 (2001) 255 | DOI

[38] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319 | DOI

[39] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[40] D Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. 4 (1971) 181 | DOI

[41] M S Narasimhan, C S Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965) 540 | DOI

[42] A Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 129 | DOI

[43] J Sacks, K Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982) 639 | DOI

[44] A Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 15 | DOI

[45] R M Schoen, The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179

[46] R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 | DOI

[47] C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 | DOI

[48] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47 | DOI

[49] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI

[50] A Wienhard, The action of the mapping class group on maximal representations, Geom. Dedicata 120 (2006) 179 | DOI

[51] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449 | DOI

Cité par Sources :