A finite ℚ–bad space
Geometry & topology, Tome 23 (2019) no. 3, pp. 1237-1249.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that, for a free noncyclic group F, the second homology group H2(F̂, ) is an uncountable –vector space, where F̂ denotes the –completion of F. This solves a problem of A K Bousfield for the case of rational coefficients. As a direct consequence of this result, it follows that a wedge of two or more circles is –bad in the sense of Bousfield–Kan. The same methods as used in the proof of the above result serve to show that H2(F̂, ) is not a divisible group, where F̂ is the integral pronilpotent completion of F.

DOI : 10.2140/gt.2019.23.1237
Classification : 14F35, 16W60, 55P60
Keywords: homology, nilpotent completion, Bousfield–Kan completion, R–good space, R–bad space

Ivanov, Sergei 1 ; Mikhailov, Roman 2

1 Laboratory of Modern Algebra and Applications, St. Petersburg State University, Saint Petersburg, Russia
2 Laboratory of Modern Algebra and Applications, St. Petersburg State University, Saint Petersburg, Russia, St. Petersburg Department of Steklov Mathematical Institute, Saint Petersburg, Russia
@article{GT_2019_23_3_a2,
     author = {Ivanov, Sergei and Mikhailov, Roman},
     title = {A finite {\ensuremath{\mathbb{Q}}{\textendash}bad} space},
     journal = {Geometry & topology},
     pages = {1237--1249},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     doi = {10.2140/gt.2019.23.1237},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1237/}
}
TY  - JOUR
AU  - Ivanov, Sergei
AU  - Mikhailov, Roman
TI  - A finite ℚ–bad space
JO  - Geometry & topology
PY  - 2019
SP  - 1237
EP  - 1249
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1237/
DO  - 10.2140/gt.2019.23.1237
ID  - GT_2019_23_3_a2
ER  - 
%0 Journal Article
%A Ivanov, Sergei
%A Mikhailov, Roman
%T A finite ℚ–bad space
%J Geometry & topology
%D 2019
%P 1237-1249
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1237/
%R 10.2140/gt.2019.23.1237
%F GT_2019_23_3_a2
Ivanov, Sergei; Mikhailov, Roman. A finite ℚ–bad space. Geometry & topology, Tome 23 (2019) no. 3, pp. 1237-1249. doi : 10.2140/gt.2019.23.1237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1237/

[1] A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133 | DOI

[2] A K Bousfield, Homological localization towers for groups and Π–modules, 186, Amer. Math. Soc. (1977) | DOI

[3] A K Bousfield, On the p–adic completions of nonnilpotent spaces, Trans. Amer. Math. Soc. 331 (1992) 335 | DOI

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972) | DOI

[5] R Brown, J L Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311 | DOI

[6] S O Ivanov, R Mikhailov, On a problem of Bousfield for metabelian groups, Adv. Math. 290 (2016) 552 | DOI

[7] S O Ivanov, R Mikhailov, On discrete homology of a free pro-p–group, Compos. Math. 154 (2018) 2195 | DOI

[8] C Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952) 588 | DOI

Cité par Sources :