Cohomology classes of strata of differentials
Geometry & topology, Tome 23 (2019) no. 3, pp. 1085-1171.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a space of stable meromorphic differentials with poles of prescribed orders and define its tautological cohomology ring. This space, just as the space of holomorphic differentials, is stratified according to the set of multiplicities of zeros of the differential. The main goal of this paper is to compute the Poincaré-dual cohomology classes of all strata. We prove that all these classes are tautological and give an algorithm to compute them.

In the second part of the paper we study the Picard group of the strata. We use the tools introduced in the first part to deduce several relations in these Picard groups.

DOI : 10.2140/gt.2019.23.1085
Classification : 14C17, 14H10, 30F30, 32G15
Keywords: moduli spaces of curves, Hodge bundle, tautological classes, strata of differentials

Sauvaget, Adrien 1

1 Université Pierre et Marie Curie, Paris, France
@article{GT_2019_23_3_a0,
     author = {Sauvaget, Adrien},
     title = {Cohomology classes of strata of differentials},
     journal = {Geometry & topology},
     pages = {1085--1171},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     doi = {10.2140/gt.2019.23.1085},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1085/}
}
TY  - JOUR
AU  - Sauvaget, Adrien
TI  - Cohomology classes of strata of differentials
JO  - Geometry & topology
PY  - 2019
SP  - 1085
EP  - 1171
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1085/
DO  - 10.2140/gt.2019.23.1085
ID  - GT_2019_23_3_a0
ER  - 
%0 Journal Article
%A Sauvaget, Adrien
%T Cohomology classes of strata of differentials
%J Geometry & topology
%D 2019
%P 1085-1171
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1085/
%R 10.2140/gt.2019.23.1085
%F GT_2019_23_3_a0
Sauvaget, Adrien. Cohomology classes of strata of differentials. Geometry & topology, Tome 23 (2019) no. 3, pp. 1085-1171. doi : 10.2140/gt.2019.23.1085. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1085/

[1] E Arbarello, M Cornalba, P A Griffiths, Geometry of algebraic curves, II, 268, Springer (2011) | DOI

[2] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, Compactification of strata of abelian differentials, Duke Math. J. 167 (2018) 2347 | DOI

[3] L Battistella, N Nabijou, A Lefschetz-type theorem for quasimap invariants via relative quasimaps, preprint (2017)

[4] C Boissy, Connected components of the strata of the moduli space of meromorphic differentials, Comment. Math. Helv. 90 (2015) 255 | DOI

[5] A Buryak, S Shadrin, L Spitz, D Zvonkine, Integrals of ψ–classes over double ramification cycles, Amer. J. Math. 137 (2015) 699 | DOI

[6] L Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994) 589 | DOI

[7] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[8] D Chen, Square-tiled surfaces and rigid curves on moduli spaces, Adv. Math. 228 (2011) 1135 | DOI

[9] D Chen, Strata of abelian differentials and the Teichmüller dynamics, J. Mod. Dyn. 7 (2013) 135 | DOI

[10] D Chen, Q Chen, Spin and hyperelliptic structures of log twisted differentials, Selecta Math. 25 (2019) | DOI

[11] A Chiodo, A construction of Witten’s top Chern class in K–theory, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 21 | DOI

[12] T Ekedahl, S Lando, M Shapiro, A Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI

[13] A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 | DOI

[14] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173 | DOI

[15] G Farkas, R Pandharipande, The moduli space of twisted canonical divisors, J. Inst. Math. Jussieu 17 (2018) 615 | DOI

[16] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[17] A Gathmann, Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002) 171 | DOI

[18] Q Gendron, The Deligne–Mumford and the incidence variety compactifications of the strata of ΩMg, Ann. Inst. Fourier Grenoble 68 (2018) 1169 | DOI

[19] Q Gendron, G Tahar, Différentielles à singularités prescrites, preprint (2017)

[20] D Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984) 173 | DOI

[21] T Graber, R Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003) 93 | DOI

[22] J Guéré, A generalization of the double ramification cycle via log-geometry, preprint (2016)

[23] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[24] M Kazarian, S Lando, D Zvonkine, Universal cohomological expressions for singularities in families of genus 0 stable maps, Int. Math. Res. Not. 2018 (2018) 6817 | DOI

[25] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 | DOI

[26] D Korotkin, P Zograf, Tau function and moduli of differentials, Math. Res. Lett. 18 (2011) 447 | DOI

[27] S Mullane, Divisorial strata of abelian differentials, Int. Math. Res. Not. 2017 (2017) 1717 | DOI

[28] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[29] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[30] R Pandharipande, A Pixton, D Zvonkine, Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI

[31] R Pandharipande, A Pixton, D Zvonkine, Tautological relations via r–spin structures, preprint (2016)

[32] A Polishchuk, Moduli spaces of curves with effective r–spin structures, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 1 | DOI

[33] A Polishchuk, A Vaintrob, Algebraic construction of Witten’s top Chern class, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math. 276, Amer. Math. Soc. (2001) 229 | DOI

[34] A Sauvaget, Volumes and Siegel–Veech constants of H(2G − 2) and Hodge integrals, Geom. Funct. Anal. 28 (2018) 1756 | DOI

[35] D Zvonkine, Strata in the projectivization of the hodge bundle, personal communication (2012)

Cité par Sources :