Lagrangian mean curvature flow of Whitney spheres
Geometry & topology, Tome 23 (2019) no. 2, pp. 1057-1084.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is shown that an equivariant Lagrangian sphere with a positivity condition on its Ricci curvature develops a type-II singularity under the Lagrangian mean curvature flow that rescales to the product of a grim reaper with a flat Lagrangian subspace. In particular this result applies to the Whitney spheres.

DOI : 10.2140/gt.2019.23.1057
Classification : 53C21, 53C42, 53C44
Keywords: Lagrangian mean curvature flow, equivariant Lagrangian submanifolds, type-II singularities

Savas-Halilaj, Andreas 1 ; Smoczyk, Knut 2

1 Department of Mathematics, University of Ioannina, Ioannina, Greece
2 Institute of Differential Geometry, Leibniz University Hannover, Hannover, Germany
@article{GT_2019_23_2_a8,
     author = {Savas-Halilaj, Andreas and Smoczyk, Knut},
     title = {Lagrangian mean curvature flow of {Whitney} spheres},
     journal = {Geometry & topology},
     pages = {1057--1084},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     doi = {10.2140/gt.2019.23.1057},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/}
}
TY  - JOUR
AU  - Savas-Halilaj, Andreas
AU  - Smoczyk, Knut
TI  - Lagrangian mean curvature flow of Whitney spheres
JO  - Geometry & topology
PY  - 2019
SP  - 1057
EP  - 1084
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/
DO  - 10.2140/gt.2019.23.1057
ID  - GT_2019_23_2_a8
ER  - 
%0 Journal Article
%A Savas-Halilaj, Andreas
%A Smoczyk, Knut
%T Lagrangian mean curvature flow of Whitney spheres
%J Geometry & topology
%D 2019
%P 1057-1084
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/
%R 10.2140/gt.2019.23.1057
%F GT_2019_23_2_a8
Savas-Halilaj, Andreas; Smoczyk, Knut. Lagrangian mean curvature flow of Whitney spheres. Geometry & topology, Tome 23 (2019) no. 2, pp. 1057-1084. doi : 10.2140/gt.2019.23.1057. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/

[1] S J Altschuler, Singularities of the curve shrinking flow for space curves, J. Differential Geom. 34 (1991) 491 | DOI

[2] H Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn, Geom. Dedicata 120 (2006) 37 | DOI

[3] S Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom. 33 (1991) 601 | DOI

[4] V Borrelli, B Y Chen, J M Morvan, Une caractérisation géométrique de la sphère de Whitney, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1485

[5] B Y Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997) 277 | DOI

[6] J Chen, W He, A note on singular time of mean curvature flow, Math. Z. 266 (2010) 921 | DOI

[7] C G Evans, J D Lotay, F Schulze, Remarks on the self-shrinking Clifford torus, preprint (2018)

[8] K Groh, Singular behavior of equivariant Lagrangian mean curvature flow, PhD thesis, Leibniz Universität Hannover (2007)

[9] K Groh, M Schwarz, K Smoczyk, K Zehmisch, Mean curvature flow of monotone Lagrangian submanifolds, Math. Z. 257 (2007) 295 | DOI

[10] R S Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 | DOI

[11] D Joyce, Y I Lee, M P Tsui, Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010) 127 | DOI

[12] F Martín, A Savas-Halilaj, K Smoczyk, On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 2853 | DOI

[13] A Neves, Singularities of Lagrangian mean curvature flow : zero-Maslov class case, Invent. Math. 168 (2007) 449 | DOI

[14] A Neves, G Tian, Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc. 365 (2013) 5655 | DOI

[15] A Ros, F Urbano, Lagrangian submanifolds of Cn with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan 50 (1998) 203 | DOI

[16] K Smoczyk, Symmetric hypersurfaces in Riemannian manifolds contracting to Lie-groups by their mean curvature, Calc. Var. Partial Differential Equations 4 (1996) 155 | DOI

[17] K Smoczyk, Der Lagrangesche mittlere Krümmungsfluss, Habilitationsschrift, Universität Leipzig (2000)

[18] K Smoczyk, Local non-collapsing of volume for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019) | DOI

[19] T Tao, Poincaré’s legacies, pages from year two of a mathematical blog, II, Amer. Math. Soc. (2009)

[20] C Viana, A note on the evolution of the Whitney sphere along mean curvature flow, preprint (2018)

[21] Y L Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 1995 | DOI

Cité par Sources :