Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It is shown that an equivariant Lagrangian sphere with a positivity condition on its Ricci curvature develops a type-II singularity under the Lagrangian mean curvature flow that rescales to the product of a grim reaper with a flat Lagrangian subspace. In particular this result applies to the Whitney spheres.
Savas-Halilaj, Andreas 1 ; Smoczyk, Knut 2
@article{GT_2019_23_2_a8, author = {Savas-Halilaj, Andreas and Smoczyk, Knut}, title = {Lagrangian mean curvature flow of {Whitney} spheres}, journal = {Geometry & topology}, pages = {1057--1084}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, doi = {10.2140/gt.2019.23.1057}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/} }
TY - JOUR AU - Savas-Halilaj, Andreas AU - Smoczyk, Knut TI - Lagrangian mean curvature flow of Whitney spheres JO - Geometry & topology PY - 2019 SP - 1057 EP - 1084 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/ DO - 10.2140/gt.2019.23.1057 ID - GT_2019_23_2_a8 ER -
Savas-Halilaj, Andreas; Smoczyk, Knut. Lagrangian mean curvature flow of Whitney spheres. Geometry & topology, Tome 23 (2019) no. 2, pp. 1057-1084. doi : 10.2140/gt.2019.23.1057. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1057/
[1] Singularities of the curve shrinking flow for space curves, J. Differential Geom. 34 (1991) 491 | DOI
,[2] Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn, Geom. Dedicata 120 (2006) 37 | DOI
,[3] On the formation of singularities in the curve shortening flow, J. Differential Geom. 33 (1991) 601 | DOI
,[4] Une caractérisation géométrique de la sphère de Whitney, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1485
, , ,[5] Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997) 277 | DOI
,[6] A note on singular time of mean curvature flow, Math. Z. 266 (2010) 921 | DOI
, ,[7] Remarks on the self-shrinking Clifford torus, preprint (2018)
, , ,[8] Singular behavior of equivariant Lagrangian mean curvature flow, PhD thesis, Leibniz Universität Hannover (2007)
,[9] Mean curvature flow of monotone Lagrangian submanifolds, Math. Z. 257 (2007) 295 | DOI
, , , ,[10] Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 | DOI
,[11] Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010) 127 | DOI
, , ,[12] On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 2853 | DOI
, , ,[13] Singularities of Lagrangian mean curvature flow : zero-Maslov class case, Invent. Math. 168 (2007) 449 | DOI
,[14] Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc. 365 (2013) 5655 | DOI
, ,[15] Lagrangian submanifolds of Cn with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan 50 (1998) 203 | DOI
, ,[16] Symmetric hypersurfaces in Riemannian manifolds contracting to Lie-groups by their mean curvature, Calc. Var. Partial Differential Equations 4 (1996) 155 | DOI
,[17] Der Lagrangesche mittlere Krümmungsfluss, Habilitationsschrift, Universität Leipzig (2000)
,[18] Local non-collapsing of volume for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019) | DOI
,[19] Poincaré’s legacies, pages from year two of a mathematical blog, II, Amer. Math. Soc. (2009)
,[20] A note on the evolution of the Whitney sphere along mean curvature flow, preprint (2018)
,[21] Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 1995 | DOI
,Cité par Sources :