The homotopy groups of the algebraic K–theory of the sphere spectrum
Geometry & topology, Tome 23 (2019) no. 1, pp. 101-134.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We calculate πK(S) [1 2], the homotopy groups of K(S) away from 2, in terms of the homotopy groups of K(), the homotopy groups of P1 and the homotopy groups of S. This builds on work of Waldhausen, who computed the rational homotopy groups (building on work of Quillen and Borel) and Rognes, who calculated the groups at odd regular primes in terms of the homotopy groups of P1 and the homotopy groups of S.

DOI : 10.2140/gt.2019.23.101
Classification : 19D10, 55Q10
Keywords: algebraic $K$–theory, sphere spectrum, Whitehead spectrum, Waldhausen $A$–theory, stable pseudoisotopy theory, cyclotomic trace

Blumberg, Andrew 1 ; Mandell, Michael 2

1 Department of Mathematics, The University of Texas, Austin, TX, United States
2 Department of Mathematics, Indiana University, Bloomington, IN, United States
@article{GT_2019_23_1_a2,
     author = {Blumberg, Andrew and Mandell, Michael},
     title = {The homotopy groups of the algebraic {K{\textendash}theory} of the sphere spectrum},
     journal = {Geometry & topology},
     pages = {101--134},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.101},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.101/}
}
TY  - JOUR
AU  - Blumberg, Andrew
AU  - Mandell, Michael
TI  - The homotopy groups of the algebraic K–theory of the sphere spectrum
JO  - Geometry & topology
PY  - 2019
SP  - 101
EP  - 134
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.101/
DO  - 10.2140/gt.2019.23.101
ID  - GT_2019_23_1_a2
ER  - 
%0 Journal Article
%A Blumberg, Andrew
%A Mandell, Michael
%T The homotopy groups of the algebraic K–theory of the sphere spectrum
%J Geometry & topology
%D 2019
%P 101-134
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.101/
%R 10.2140/gt.2019.23.101
%F GT_2019_23_1_a2
Blumberg, Andrew; Mandell, Michael. The homotopy groups of the algebraic K–theory of the sphere spectrum. Geometry & topology, Tome 23 (2019) no. 1, pp. 101-134. doi : 10.2140/gt.2019.23.101. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.101/

[1] V Angeltveit, A Blumberg, T Gerhardt, M Hill, T Lawson, M Mandell, Topological cyclic homology via the norm, preprint (2014)

[2] C Ausoni, B I Dundas, J Rognes, Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere, Doc. Math. 13 (2008) 795

[3] A J Blumberg, M A Mandell, The nilpotence theorem for the algebraic K–theory of the sphere spectrum, Geom. Topol. 21 (2017) 3453 | DOI

[4] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465 | DOI

[5] M Bökstedt, I Madsen, Topological cyclic homology of the integers, from: "–theory", Astérisque 226, Soc. Math. France (1994) 57

[6] M Bökstedt, I Madsen, Algebraic K–theory of local number fields : the unramified case, from: "Prospects in topology" (editor F Quinn), Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 28

[7] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI

[8] B I Dundas, Relative K–theory and topological cyclic homology, Acta Math. 179 (1997) 223 | DOI

[9] W G Dwyer, E M Friedlander, Topological models for arithmetic, Topology 33 (1994) 1 | DOI

[10] W G Dwyer, S A Mitchell, On the K–theory spectrum of a ring of algebraic integers, –Theory 14 (1998) 201 | DOI

[11] T G Goodwillie, Relative algebraic K–theory and cyclic homology, Ann. of Math. 124 (1986) 347 | DOI

[12] L Hesselholt, I Madsen, On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI

[13] L Hesselholt, I Madsen, On the K–theory of local fields, Ann. of Math. 158 (2003) 1 | DOI

[14] J R Klein, J Rognes, The fiber of the linearization map A(∗) → K(Z), Topology 36 (1997) 829 | DOI

[15] M Kolster, T Nguyen Quang Do, V Fleckinger, Twisted S–units, p–adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996) 679 | DOI

[16] R Lee, R H Szczarba, The group K3(Z) is cyclic of order forty-eight, Ann. of Math. 104 (1976) 31 | DOI

[17] R Lee, R H Szczarba, On the torsion in K4(Z) and K5(Z), Duke Math. J. 45 (1978) 101 | DOI

[18] I Madsen, Algebraic K–theory and traces, from: "Current developments in mathematics, 1995" (editors R Bott, M Hopkins, A Jaffe, I Singer, D Stroock, S T Yau), Int. (1994) 191

[19] I Madsen, C Schlichtkrull, The circle transfer and K–theory, from: "Geometry and topology" (editors K Grove, I H Madsen, E K Pedersen), Contemp. Math. 258, Amer. Math. Soc. (2000) 307 | DOI

[20] B Mazur, A Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179 | DOI

[21] R Mccarthy, Relative algebraic K–theory and topological cyclic homology, Acta Math. 179 (1997) 197 | DOI

[22] D C Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984) 415 | DOI

[23] D C Ravenel, Nilpotence and periodicity in stable homotopy theory, 128, Princeton Univ. Press (1992)

[24] K A Ribet, A modular construction of unramified p–extensions of Q(μp), Invent. Math. 34 (1976) 151 | DOI

[25] J Riou, Algebraic K–theory, A1–homotopy and Riemann–Roch theorems, J. Topol. 3 (2010) 229 | DOI

[26] J Rognes, Characterizing connected K–theory by homotopy groups, Math. Proc. Cambridge Philos. Soc. 114 (1993) 99 | DOI

[27] J Rognes, K4(Z) is the trivial group, Topology 39 (2000) 267 | DOI

[28] J Rognes, Two-primary algebraic K–theory of pointed spaces, Topology 41 (2002) 873 | DOI

[29] J Rognes, The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003) 155 | DOI

[30] P Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979) 181 | DOI

[31] R W Thomason, Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437 | DOI

[32] F Waldhausen, Algebraic K–theory of spaces : a manifold approach, from: "Current trends in algebraic topology, I" (editors R M Kane, S O Kochman, P S Selick, V P Snaith), CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141

[33] F Waldhausen, Algebraic K–theory of spaces, localization, and the chromatic filtration of stable homotopy, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 173 | DOI

[34] F Waldhausen, B Jahren, J Rognes, Spaces of PL manifolds and categories of simple maps, 186, Princeton Univ. Press (2013) | DOI

[35] L C Washington, Introduction to cyclotomic fields, 83, Springer (1997) | DOI

[36] C A Weibel, The K–book : an introduction to algebraic K–theory, 145, Amer. Math. Soc. (2013)

Cité par Sources :